Python 获取 DataFrame 的日期时间列的工作日/星期几
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/28009370/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Get weekday/day-of-week for Datetime column of DataFrame
提问by EP1986
I have a DataFrame df
like the following (excerpt, 'Timestamp' are the index):
我有一个如下df
所示的数据帧(摘录,“时间戳”是索引):
Timestamp Value
2012-06-01 00:00:00 100
2012-06-01 00:15:00 150
2012-06-01 00:30:00 120
2012-06-01 01:00:00 220
2012-06-01 01:15:00 80
...and so on.
I need a new column df['weekday']
with the respective weekday/day-of-week of the timestamps.
我需要一个新列df['weekday']
,其中包含时间戳的相应工作日/星期几。
How can I get this?
我怎样才能得到这个?
采纳答案by EdChum
Use the new dt.dayofweek
property:
使用新dt.dayofweek
属性:
In [2]:
df['weekday'] = df['Timestamp'].dt.dayofweek
df
Out[2]:
Timestamp Value weekday
0 2012-06-01 00:00:00 100 4
1 2012-06-01 00:15:00 150 4
2 2012-06-01 00:30:00 120 4
3 2012-06-01 01:00:00 220 4
4 2012-06-01 01:15:00 80 4
In the situation where the Timestamp
is your index you need to reset the index and then call the dt.dayofweek
property:
在Timestamp
是您的索引的情况下,您需要重置索引,然后调用该dt.dayofweek
属性:
In [14]:
df = df.reset_index()
df['weekday'] = df['Timestamp'].dt.dayofweek
df
Out[14]:
Timestamp Value weekday
0 2012-06-01 00:00:00 100 4
1 2012-06-01 00:15:00 150 4
2 2012-06-01 00:30:00 120 4
3 2012-06-01 01:00:00 220 4
4 2012-06-01 01:15:00 80 4
Strangely if you try to create a series from the index in order to not reset the index you get NaN
values as does using the result of reset_index
to call the dt.dayofweek
property without assigning the result of reset_index
back to the original df:
奇怪的是,如果您尝试从索引创建一个系列以便不重置索引,您将获得NaN
值,就像使用 的结果reset_index
调用dt.dayofweek
属性而不将结果分配reset_index
回原始 df 一样:
In [16]:
df['weekday'] = pd.Series(df.index).dt.dayofweek
df
Out[16]:
Value weekday
Timestamp
2012-06-01 00:00:00 100 NaN
2012-06-01 00:15:00 150 NaN
2012-06-01 00:30:00 120 NaN
2012-06-01 01:00:00 220 NaN
2012-06-01 01:15:00 80 NaN
In [17]:
df['weekday'] = df.reset_index()['Timestamp'].dt.dayofweek
df
Out[17]:
Value weekday
Timestamp
2012-06-01 00:00:00 100 NaN
2012-06-01 00:15:00 150 NaN
2012-06-01 00:30:00 120 NaN
2012-06-01 01:00:00 220 NaN
2012-06-01 01:15:00 80 NaN
EDIT
编辑
As pointed out to me by user @joris you can just access the weekday
attribute of the index so the following will work and is more compact:
正如用户@joris 向我指出的那样,您可以访问weekday
索引的属性,因此以下内容将起作用并且更加紧凑:
df['Weekday'] = df.index.weekday
df['Weekday'] = df.index.weekday
回答by QM.py
If the Timestamp
if a datatime
, then you can just use:df['weekday'] = df['Timestamp'].apply(lambda x: x.weekday())
如果Timestamp
if a datatime
,那么您可以使用:df['weekday'] = df['Timestamp'].apply(lambda x: x.weekday())
or
或者
df['weekday'] = pd.to_datetime(df['Timestamp']).apply(lambda x: x.weekday())
df['weekday'] = pd.to_datetime(df['Timestamp']).apply(lambda x: x.weekday())
回答by TiTo
In case somebody else has the same issue with a multiindexed dataframe, here is what solved it for me, based on @joris solution:
如果其他人对多索引数据帧有同样的问题,以下是基于@joris 解决方案为我解决的问题:
df['Weekday'] = df.index.get_level_values(1).weekday
for me date was the get_level_values(1)
instead of get_level_values(0)
, which would work for the outer index.
对我来说 date 是get_level_values(1)
代替get_level_values(0)
,它适用于外部索引。