pandas 从pandas转换为numpy时如何保留列名
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/40554179/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to keep column names when converting from pandas to numpy
提问by user48956
According to this post, I should be able to access the names of columns in an ndarray as a.dtype.names
根据这篇文章,我应该能够访问 ndarray 中列的名称作为 a.dtype.names
Howevever, if I convert a pandas DataFrame to an ndarray with df.as_matrix() or df.values, then the dtype.names field is None. Additionally, if I try to assign column names to the ndarray
但是,如果我使用 df.as_matrix() 或 df.values 将 Pandas DataFrame 转换为 ndarray,则 dtype.names 字段为 None。此外,如果我尝试将列名分配给 ndarray
X = pd.DataFrame(dict(age=[40., 50., 60.], sys_blood_pressure=[140.,150.,160.]))
print X
print type(X.as_matrix())# <type 'numpy.ndarray'>
print type(X.as_matrix()[0]) # <type 'numpy.ndarray'>
m = X.as_matrix()
m.dtype.names = list(X.columns)
I get
我得到
ValueError: there are no fields defined
UPDATE:
更新:
I'm particularly interested in the cases where the matrix only needs to hold a single type (it is an ndarray of a specific numeric type), since I'd also like to use cython for optimization. (I suspect numpy records and structured arrays are more difficult to deal with since they're more freely typed.)
我对矩阵只需要保存单一类型(它是特定数字类型的 ndarray)的情况特别感兴趣,因为我也想使用 cython 进行优化。(我怀疑 numpy 记录和结构化数组更难处理,因为它们的类型更自由。)
Really, I'd just like to maintain the column_name meta data for arrays passed through a deep tree of sci-kit predictors. Its interface's .fit(X,y) and .predict(X) API don't permit passing additional meta-data about the column labels outside of the X and y object.
真的,我只想维护通过 sci-kit 预测器的深度树传递的数组的 column_name 元数据。它的接口的 .fit(X,y) 和 .predict(X) API 不允许在 X 和 y 对象之外传递关于列标签的额外元数据。
采纳答案by S0AndS0
Yet more methods of converting a pandas.DataFrame
to numpy.array
while preserving label/column names
然而,更多的转换方法pandas.DataFrame
来numpy.array
同时保持标签/列名
This is mainly for demonstrating how to set
dtype
/column_dtypes
, because sometimes a data source iterator's output'll need some pre-normalization.
这主要是为了演示如何设置
dtype
/column_dtypes
,因为有时数据源迭代器的输出需要一些预规范化。
Method one inserts by column into a zeroed array of predefined heightand is loosely based on a Creating Structured Arraysguide that just a bit of web-crawling turned up
方法一按列插入到预定义高度的归零数组中,并且松散地基于创建结构化数组指南,该指南只是出现了一些网络爬行
import numpy
def to_tensor(dataframe, columns = [], dtypes = {}):
# Use all columns from data frame if none where listed when called
if len(columns) <= 0:
columns = dataframe.columns
# Build list of dtypes to use, updating from any `dtypes` passed when called
dtype_list = []
for column in columns:
if column not in dtypes.keys():
dtype_list.append(dataframe[column].dtype)
else:
dtype_list.append(dtypes[column])
# Build dictionary with lists of column names and formatting in the same order
dtype_dict = {
'names': columns,
'formats': dtype_list
}
# Initialize _mostly_ empty nupy array with column names and formatting
numpy_buffer = numpy.zeros(
shape = len(dataframe),
dtype = dtype_dict)
# Insert values from dataframe columns into numpy labels
for column in columns:
numpy_buffer[column] = dataframe[column].to_numpy()
# Return results of conversion
return numpy_buffer
Method two is based on user7138814's answerand will likely be more efficient as it is basically a wrapper for the built in to_records
method available to pandas.DataFrame
s
方法二基于user7138814的回答并且可能会更有效,因为它基本上是to_records
可用于pandas.DataFrame
s的内置方法的包装器
def to_tensor(dataframe, columns = [], dtypes = {}, index = False):
to_records_kwargs = {'index': index}
if not columns: # Default to all `dataframe.columns`
columns = dataframe.columns
if dtypes: # Pull in modifications only for dtypes listed in `columns`
to_records_kwargs['column_dtypes'] = {}
for column in dtypes.keys():
if column in columns:
to_records_kwargs['column_dtypes'].update({column: dtypes.get(column)})
return dataframe[columns].to_records(**to_records_kwargs)
With either of the above one could do...
有了上面的任何一个都可以做......
X = pandas.DataFrame(dict(age = [40., 50., 60.], sys_blood_pressure = [140., 150., 160.]))
# Example of overwriting dtype for a column
X_tensor = to_tensor(X, dtypes = {'age': 'int32'})
print("Ages -> {0}".format(X_tensor['age']))
print("SBPs -> {0}".format(X_tensor['sys_blood_pressure']))
... which shouldoutput...
...应该输出...
Ages -> array([40, 50, 60])
SBPs -> array([140., 150., 160.])
... and a full dump of X_tensor
should look like the following.
...一个完整的转储X_tensor
应该如下所示。
array([(40, 140.), (50, 150.), (60, 160.)],
dtype=[('age', '<i4'), ('sys_blood_pressure', '<f8')])
Some thoughts
一些想法
While method two will likely be more efficient than the first, method one (with some modifications) may be more useful for merging two or more pandas.DataFrame
s into one numpy.array
.
虽然方法二可能比第一种更有效,但方法一(经过一些修改)对于将两个或多个pandas.DataFrame
s合并为一个可能更有用numpy.array
。
Additionally (after swinging back through to review), method one will likely face-plantas it's written with errors about to_records_kwargs
not being a mapping if dtypes
is notdefined, next time I'm feeling Pythonic I may resolve that with an else
condition.
另外(通过对审核理性回归之后),一个方法可能会面对的植物,因为它是有错误写to_records_kwargs
不是如果映射dtypes
是不,接下来的时间定义我觉得Python的我可能会解决与else
条件。
回答by Nickil Maveli
Consider a DF
as shown below:
考虑DF
如下图所示:
X = pd.DataFrame(dict(one=['Strawberry', 'Fields', 'Forever'], two=[1,2,3]))
X
Provide a list of tuplesas data input to the structured array:
提供元组列表作为结构化数组的数据输入:
arr_ip = [tuple(i) for i in X.as_matrix()]
Ordered list of field names:
字段名称的有序列表:
dtyp = np.dtype(list(zip(X.dtypes.index, X.dtypes)))
Here, X.dtypes.index
gives you the column names and X.dtypes
it's corresponding dtypes which are unified again into a list of tuplesand fed as input to the dtype elements to be constructed.
在这里,X.dtypes.index
为您提供列名称及其X.dtypes
相应的 dtype,它们再次统一为一个元组列表,并作为要构造的 dtype 元素的输入。
arr = np.array(arr_ip, dtype=dtyp)
gives:
给出:
arr
# array([('Strawberry', 1), ('Fields', 2), ('Forever', 3)],
# dtype=[('one', 'O'), ('two', '<i8')])
and
和
arr.dtype.names
# ('one', 'two')
回答by user7138814
Pandas dataframe also has a handy to_records
method. Demo:
Pandas 数据框也有一个方便的to_records
方法。演示:
X = pd.DataFrame(dict(age=[40., 50., 60.],
sys_blood_pressure=[140.,150.,160.]))
m = X.to_records(index=False)
print repr(m)
Returns:
返回:
rec.array([(40.0, 140.0), (50.0, 150.0), (60.0, 160.0)],
dtype=[('age', '<f8'), ('sys_blood_pressure', '<f8')])
This is a "record array", which is an ndarray subclass that allows field access using attributes, e.g. m.age
in addition to m['age']
.
这是一个“记录数组”,它是一个 ndarray 子类,它允许使用属性进行字段访问,例如m.age
除了m['age']
.
You can pass this to a cython function as a regular float array by constructing a view:
您可以通过构建视图将其作为常规浮点数组传递给 cython 函数:
m_float = m.view(float).reshape(m.shape + (-1,))
print repr(m_float)
Which gives:
这使:
rec.array([[ 40., 140.],
[ 50., 150.],
[ 60., 160.]],
dtype=float64)
Note in order for this to work, the original Dataframe must have a float dtype for every column. To make sure use m = X.astype(float, copy=False).to_records(index=False)
.
请注意,为了使其工作,原始 Dataframe 必须为每一列都有一个 float dtype。为了确保使用m = X.astype(float, copy=False).to_records(index=False)
.
回答by user48956
OK, here where I'm leaning:
好的,这里是我靠的地方:
class NDArrayWithColumns(np.ndarray):
def __new__(cls, obj, columns=None):
obj = obj.view(cls)
obj.columns = columns
return obj
def __array_finalize__(self, obj):
if obj is None: return
self.columns = getattr(obj, 'columns', None)
@staticmethod
def from_dataframe(df):
cols = tuple(df.columns)
arr = df.as_matrix(cols)
return NDArrayWithColumns.from_array(arr,cols)
@staticmethod
def from_array(array,columns):
if isinstance(array,NDArrayWithColumns):
return array
return NDArrayWithColumns(array,tuple(columns))
def __str__(self):
sup = np.ndarray.__str__(self)
if self.columns:
header = ", ".join(self.columns)
header = "# " + header + "\n"
return header+sup
return sup
NAN = float("nan")
X = pd.DataFrame(dict(age=[40., NAN, 60.], sys_blood_pressure=[140.,150.,160.]))
arr = NDArrayWithColumns.from_dataframe(X)
print arr
print arr.columns
print arr.dtype
Gives:
给出:
# age, sys_blood_pressure
[[ 40. 140.]
[ nan 150.]
[ 60. 160.]]
('age', 'sys_blood_pressure')
float64
and can also be passed to types cython function expecting a ndarray[2,double_t].
并且也可以传递给需要 ndarray[2,double_t] 的类型 cython 函数。
UPDATE: this works pretty good except for some oddness when passing the type to ufuncs.
更新:除了将类型传递给 ufuncs 时有些奇怪之外,这很好用。