Python 如何从 Spark SQL 中的列表创建数据框?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43444925/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to create dataframe from list in Spark SQL?
提问by Liangju Zeng
Spark version : 2.1
火花版本:2.1
For example, in pyspark, i create a list
例如,在 pyspark 中,我创建了一个列表
test_list = [['Hello', 'world'], ['I', 'am', 'fine']]
test_list = [['Hello', 'world'], ['I', 'am', 'fine']]
then how to create a dataframe form the test_list, where the dataframe's type is like below:
那么如何从test_list中创建一个数据框,其中数据框的类型如下:
DataFrame[words: array<string>]
DataFrame[words: array<string>]
回答by Pushkr
here is how -
这是如何 -
from pyspark.sql.types import *
cSchema = StructType([StructField("WordList", ArrayType(StringType()))])
# notice extra square brackets around each element of list
test_list = [['Hello', 'world']], [['I', 'am', 'fine']]
df = spark.createDataFrame(test_list,schema=cSchema)
回答by Grant Shannon
i had to work with multiple columns and types - the example below has one string column and one integer column. A slight adjustment to Pushkr's code (above) gives:
我不得不处理多个列和类型——下面的例子有一个字符串列和一个整数列。对 Pushkr 的代码(上图)稍作调整,结果如下:
from pyspark.sql.types import *
cSchema = StructType([StructField("Words", StringType())\
,StructField("total", IntegerType())])
test_list = [['Hello', 1], ['I am fine', 3]]
df = spark.createDataFrame(test_list,schema=cSchema)
output:
输出:
df.show()
+---------+-----+
| Words|total|
+---------+-----+
| Hello| 1|
|I am fine| 3|
+---------+-----+
回答by hamza tuna
You should use list of Row objects([Row]) to create data frame.
您应该使用 Row 对象列表([Row])来创建数据框。
from pyspark.sql import Row
spark.createDataFrame(list(map(lambda x: Row(words=x), test_list)))
回答by Raju Bairishetti
You can create a RDD first from the input and then convert to dataframe from the constructed RDD
<code>
import sqlContext.implicits._
val testList = Array(Array("Hello", "world"), Array("I", "am", "fine"))
// CREATE RDD
val testListRDD = sc.parallelize(testList)
val flatTestListRDD = testListRDD.flatMap(entry => entry)
// COnvert RDD to DF
val testListDF = flatTestListRDD.toDF
testListDF.show
</code>