Python 如何使用 Pandas 的 DataFrame 计算百分比

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/23539832/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 03:06:37  来源:igfitidea点击:

How to calculate percentage with Pandas' DataFrame

pythonpandas

提问by user977828

How to add another column to Pandas' DataFrame with percentage? The dict can change on size.

如何以百分比向 Pandas 的 DataFrame 添加另一列?dict 可以改变大小。

>>> import pandas as pd
>>> a = {'Test 1': 4, 'Test 2': 1, 'Test 3': 1, 'Test 4': 9}
>>> p = pd.DataFrame(a.items())
>>> p
        0  1
0  Test 2  1
1  Test 3  1
2  Test 1  4
3  Test 4  9

[4 rows x 2 columns]

采纳答案by FooBar

If indeed percentage of 10is what you want, the simplest way is to adjust your intake of the data slightly:

如果确实10是您想要的百分比,最简单的方法是稍微调整您的数据摄入量:

>>> p = pd.DataFrame(a.items(), columns=['item', 'score'])
>>> p['perc'] = p['score']/10
>>> p
Out[370]: 
     item  score  perc
0  Test 2      1   0.1
1  Test 3      1   0.1
2  Test 1      4   0.4
3  Test 4      9   0.9

For real percentages, instead:

对于实际百分比,改为:

>>> p['perc']= p['score']/p['score'].sum()
>>> p
Out[427]: 
     item  score      perc
0  Test 2      1  0.066667
1  Test 3      1  0.066667
2  Test 1      4  0.266667
3  Test 4      9  0.600000

回答by joemar.ct

First, make the keys of your dictionary the index of you dataframe:

首先,将字典的键作为数据框的索引:

 import pandas as pd
 a = {'Test 1': 4, 'Test 2': 1, 'Test 3': 1, 'Test 4': 9}
 p = pd.DataFrame([a])
 p = p.T # transform
 p.columns = ['score']

Then, compute the percentage and assign to a new column.

然后,计算百分比并分配给新列。

 def compute_percentage(x):
      pct = float(x/p['score'].sum()) * 100
      return round(pct, 2)

 p['percentage'] = p.apply(compute_percentage, axis=1)

This gives you:

这给你:

         score  percentage
 Test 1      4   26.67
 Test 2      1    6.67
 Test 3      1    6.67
 Test 4      9   60.00

 [4 rows x 2 columns]