pandas 根据另一个数据框的列值过滤数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/50655370/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Filtering the dataframe based on the column value of another dataframe
提问by Moses Soleman
I have 2 dataframes
我有 2 个数据框
df1
df1
Company SKU Sales
Walmart A 100
Total A 200
Walmart B 200
Total B 300
Walmart C 400
Walmart D 500
df2
df2
Company SKU Sales
Walmart A 400
Total B 300
Walmart C 900
Walmart F 400
Total G 500
I want a resulting dataframe (df2) which only has the records of matching SKUs in df1 and df2
我想要一个结果数据框 (df2),它只包含 df1 和 df2 中匹配 SKU 的记录
df2
df2
Company SKU Sales
Walmart A 400
Total B 300
Walmart C 900
I want only the unique (Company + SKU) values of df1 in df2
我只想要 df2 中 df1 的唯一(公司 + SKU)值
Is there any good solution to achieve this?
有没有什么好的解决方案来实现这一目标?
回答by Anton vBR
Update
更新
You could use a simple mask:
您可以使用一个简单的掩码:
m = df2.SKU.isin(df1.SKU)
df2 = df2[m]
You are looking for an inner join. Try this:
您正在寻找内部连接。尝试这个:
df3 = df1.merge(df2, on=['SKU','Sales'], how='inner')
# SKU Sales
#0 A 100
#1 B 200
#2 C 300
Or this:
或这个:
df3 = df1.merge(df2, on='SKU', how='inner')
# SKU Sales_x Sales_y
#0 A 100 100
#1 B 200 200
#2 C 300 300
回答by Ram
Solution 1 :
解决方案1:
# First identify the common SKU's
temp = list(set(list(df1.SKU)).intersection(set(list(df2.SKU))))
# Filter df2 using the list of common SKU's
df3 = df2[df2.SKU.isin(temp)]
print(df3)
SKU Sales
0 A 400
1 B 300
2 C 900
Solution 2 : One Line solution
解决方案 2:单线解决方案
df3 = df2[df2.SKU.isin(list(df1.SKU))]
EDIT 1 : Solution for the updated question (Not the optimal way of doing it, but answers your question)
编辑 1:更新问题的解决方案(不是最佳方式,但可以回答您的问题)
# reading data for df1
df1= pd.read_clipboard(sep='\s+')
df1
Company SKU Sales
0 Walmart A 100
1 Total A 200
2 Walmart B 200
3 Total B 300
4 Walmart C 400
5 Walmart D 500
# reading data for df2
df2= pd.read_clipboard(sep='\s+')
df2
Company SKU Sales
0 Walmart A 400
1 Total B 300
2 Walmart C 900
3 Walmart F 400
4 Total G 500
# Using intersect and zip to create a list of tuples matching in the data frames
temp = list(set(list(zip(df1.Company,df1.SKU))).intersection(set(list(zip(df2.Company,df2.SKU)))))
temp
[('Walmart', 'A'), ('Walmart', 'C'), ('Total', 'B')]
# Creating a helper variable in df2 to lookup in the temp list
df2["temp"] = list(zip(df2.Company,df2.SKU))
df2= df2[df2["temp"].isin(temp)]
del(df2["temp"])
df2
Company SKU Sales
0 Walmart A 400
1 Total B 300
2 Walmart C 900
Suggestions are welcome to improve this code
欢迎提出改进此代码的建议
回答by jpp
One way is to align indices and then use a mask.
一种方法是对齐索引,然后使用掩码。
# align indices
df1 = df1.set_index(['Company', 'SKU'])
df2 = df2.set_index(['Company', 'SKU'])
# calculate & apply mask
df2 = df2[df2.index.isin(df1.index)].reset_index()
Resetting index is not required, but needed to elevate Company
and SKU
to columns.
不需要重置索引,但需要提升Company
和SKU
列。