pandas 如何使用日期时间对数据框进行切片?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/9788299/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 15:40:35  来源:igfitidea点击:

How to perform slicing of a data frame using datetimes?

pythonpandas

提问by saroele

I have a pandas.DataFramedf1, indexed with a pandas.DateRangeobject.

我有一个pandas.DataFramedf1, 用一个pandas.DateRange对象索引。

If I have a d1and d2, as datetimes, why does df[d1:d2]not work, and how can I obtain this slice?

如果我有一个d1andd2作为日期时间,为什么不起作用df[d1:d2],我怎样才能获得这个切片?

回答by Wes McKinney

This works:

这有效:

In [25]: df.ix[d1:d2]
Out[25]: 
                   A         B         C         D
2000-01-10  1.149815  0.686696 -1.230991 -1.610557
2000-01-11 -1.296118 -0.172950 -0.603887  0.383690
2000-01-12 -1.034574 -0.523238  0.626968  0.471755
2000-01-13 -0.193280  1.857499 -0.046383  0.849935
2000-01-14 -1.043492 -0.820525  0.868685 -0.773050
2000-01-17 -1.622019 -0.363992  1.207590  0.577290

cf. http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-labels

参见 http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-labels

On first principles df[d1:d2]should work as it does for Series:

首要原则df[d1:d2]应该像系列一样工作:

In [27]: df['A'][d1:d2]
Out[27]: 
2000-01-10    1.149815
2000-01-11   -1.296118
2000-01-12   -1.034574
2000-01-13   -0.193280
2000-01-14   -1.043492
2000-01-17   -1.622019
Name: A

Creating an issue here: https://github.com/pydata/pandas/issues/946

在此处创建问题:https: //github.com/pydata/pandas/issues/946

回答by eumiro

Try the truncatemethod:

试试truncate方法:

df.truncate(before=d1, after=d2)

It won't modify your original dfand will return a truncated one.

它不会修改您的原始文件df,而是返回一个截断的文件。

From docs:

从文档:

Function truncate a sorted DataFrame / Series before and/or after
some particular dates.

Parameters
----------
before : date
    Truncate before date
after : date
    Truncate after date

Returns
-------
truncated : type of caller