Pandas 数据框 - 运行总和并重置

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/32890124/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:57:17  来源:igfitidea点击:

Pandas dataframe - running sum with reset

pythonpandasdataframemultiple-columnscumsum

提问by Baron Yugovich

I want to calculate the running sum in a given column(without using loops, of course). The caveat is that I have this other column that specifies when to reset the running sum to the value present in that row. Best explained by the following example:

我想计算给定列中的运行总和(当然不使用循环)。需要注意的是,我还有另一列指定何时将运行总和重置为该行中存在的值。最好通过以下示例来解释:

   reset  val   desired_col
0      0    1   1
1      0    5   6
2      0    4   10
3      1    2   2
4      1   -1   -1
5      0    6   5
6      0    4   9
7      1    2   2

desired_colis the value I want to be calculated.

desired_col是我想要计算的值。

回答by jezrael

You can use 2 times cumsum():

您可以使用 2 次cumsum()

#   reset  val  desired_col
#0      0    1            1
#1      0    5            6
#2      0    4           10
#3      1    2            2
#4      1   -1           -1
#5      0    6            5
#6      0    4            9
#7      1    2            2
df['cumsum'] = df['reset'].cumsum()
#cumulative sums of groups to column des
df['des']= df.groupby(['cumsum'])['val'].cumsum()
print df
#   reset  val  desired_col  cumsum  des
#0      0    1            1       0    1
#1      0    5            6       0    6
#2      0    4           10       0   10
#3      1    2            2       1    2
#4      1   -1           -1       2   -1
#5      0    6            5       2    5
#6      0    4            9       2    9
#7      1    2            2       3    2
#remove columns desired_col and cumsum
df = df.drop(['desired_col', 'cumsum'], axis=1)
print df
#   reset  val  des
#0      0    1    1
#1      0    5    6
#2      0    4   10
#3      1    2    2
#4      1   -1   -1
#5      0    6    5
#6      0    4    9
#7      1    2    2