Python 从 Pandas DataFrame 中删除名称包含特定字符串的列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/19071199/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Drop columns whose name contains a specific string from pandas DataFrame
提问by Alexis Eggermont
I have a pandas dataframe with the following column names:
我有一个带有以下列名称的熊猫数据框:
Result1, Test1, Result2, Test2, Result3, Test3, etc...
结果 1、测试 1、结果 2、测试 2、结果 3、测试 3 等...
I want to drop all the columns whose name contains the word "Test". The numbers of such columns is not static but depends on a previous function.
我想删除名称中包含“Test”一词的所有列。此类列的数量不是静态的,而是取决于先前的函数。
How can I do that?
我怎样才能做到这一点?
采纳答案by Nic
import pandas as pd
import numpy as np
array=np.random.random((2,4))
df=pd.DataFrame(array, columns=('Test1', 'toto', 'test2', 'riri'))
print df
Test1 toto test2 riri
0 0.923249 0.572528 0.845464 0.144891
1 0.020438 0.332540 0.144455 0.741412
cols = [c for c in df.columns if c.lower()[:4] != 'test']
df=df[cols]
print df
toto riri
0 0.572528 0.144891
1 0.332540 0.741412
回答by Phillip Cloud
Use the DataFrame.select
method:
使用DataFrame.select
方法:
In [38]: df = DataFrame({'Test1': randn(10), 'Test2': randn(10), 'awesome': randn(10)})
In [39]: df.select(lambda x: not re.search('Test\d+', x), axis=1)
Out[39]:
awesome
0 1.215
1 1.247
2 0.142
3 0.169
4 0.137
5 -0.971
6 0.736
7 0.214
8 0.111
9 -0.214
回答by SAH
You can filter out the columns you DO want using 'filter'
您可以使用“过滤器”过滤掉您想要的列
import pandas as pd
import numpy as np
data2 = [{'test2': 1, 'result1': 2}, {'test': 5, 'result34': 10, 'c': 20}]
df = pd.DataFrame(data2)
df
c result1 result34 test test2
0 NaN 2.0 NaN NaN 1.0
1 20.0 NaN 10.0 5.0 NaN
Now filter
现在过滤
df.filter(like='result',axis=1)
Get..
得到..
result1 result34
0 2.0 NaN
1 NaN 10.0
回答by Bindiya12
Here is a good way to this:
这是一个很好的方法:
df = df[df.columns.drop(list(df.filter(regex='Test')))]
回答by Warren O'Neill
This can be done neatly in one line with:
这可以在一行中巧妙地完成:
df = df.drop(df.filter(regex='Test').columns, axis=1)
回答by cs95
Cheaper, Faster, and Idiomatic: str.contains
更便宜、更快、更惯用: str.contains
In recent versions of pandas, you can use string methods on the index and columns. Here, str.startswith
seems like a good fit.
在最新版本的 Pandas 中,您可以在索引和列上使用字符串方法。在这里,str.startswith
似乎很合适。
To remove all columns starting with a given substring:
要删除以给定子字符串开头的所有列:
df.columns.str.startswith('Test')
# array([ True, False, False, False])
df.loc[:,~df.columns.str.startswith('Test')]
toto test2 riri
0 x x x
1 x x x
For case-insensitive matching, you can use regex-based matching with str.contains
with an SOL anchor:
对于不区分大小写的匹配,您可以使用基于正则表达式的匹配和str.contains
SOL 锚点:
df.columns.str.contains('^test', case=False)
# array([ True, False, True, False])
df.loc[:,~df.columns.str.contains('^test', case=False)]
toto riri
0 x x
1 x x
if mixed-types is a possibility, specify na=False
as well.
如果混合类型是可能的,也指定na=False
。
回答by ba0101
This method does everything in place. Many of the other answers create copies and are not as efficient:
这个方法做的一切都到位了。许多其他答案创建副本并且效率不高:
df.drop(df.columns[df.columns.str.contains('Test')], axis=1, inplace=True)
df.drop(df.columns[df.columns.str.contains('Test')], axis=1, inplace=True)
回答by Roy Assis
Don't drop. Catch the opposite of what you want.
不要掉。抓住你想要的反面。
df = df.filter(regex='^((?!badword).)*$').columns
回答by ZacNt
the shortest way to do is is :
最短的方法是:
resdf = df.filter(like='Test',axis=1)