java Spark - 按数据帧语法分组?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/38848866/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-11-03 03:49:28  来源:igfitidea点击:

Spark - Group by HAVING with dataframe syntax?

javasqlapache-sparkdataframeapache-spark-sql

提问by lte__

What's the syntax for using a groupby-having in Spark without an sql/hiveContext? I know I can do

在没有 sql/hiveContext 的 Spark 中使用 groupby-have 的语法是什么?我知道我能做到

DataFrame df = some_df
df.registreTempTable("df");    
df1 = sqlContext.sql("SELECT * FROM df GROUP BY col1 HAVING some stuff")

but how do I do it with a syntax like

但是我如何使用类似的语法来做到这一点

df.select(df.col("*")).groupBy(df.col("col1")).having("some stuff")

This .having()does not seem to exist.

.having()似乎不存在。

回答by zero323

Yes, it doesn't exist. You express the same logic with aggfollowed by where:

是的,它不存在。你用agg后跟表达相同的逻辑where

df.groupBy(someExpr).agg(somAgg).where(somePredicate) 

回答by Sri_Karthik

Say for example if I want to find products in each category, having fees less than 3200 and their count must not be less than 10:

例如,如果我想在每个类别中查找费用低于 3200 且数量不少于 10 的产品:

  • SQL query:
  • SQL查询:
sqlContext.sql("select Category,count(*) as 
count from hadoopexam where HadoopExamFee<3200  
group by Category having count>10")
  • DataFrames API
  • 数据帧 API
from pyspark.sql.functions import *

df.filter(df.HadoopExamFee<3200)
  .groupBy('Category')
  .agg(count('Category').alias('count'))
  .filter(column('count')>10)