Pandas Python:如何从列表中创建多列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/51495800/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas Python : how to create multiple columns from a list
提问by Vincent
I have a list with columns to create :
我有一个包含要创建的列的列表:
new_cols = ['new_1', 'new_2', 'new_3']
I want to create these columns in a dataframe and fill them with zero :
我想在数据框中创建这些列并用零填充它们:
df[new_cols] = 0
Get error :
获取错误:
"['new_1', 'new_2', 'new_3'] not in index"
which is true but unfortunate as I want to create them...
这是真的,但很不幸,因为我想创建它们......
EDIT : This is a duplicate of this question : Pandas: Add multiple empty columns to DataFramehowever I keep this one too because the accepted answer here was the simple solution I was looking for, and it was not he accepted answer out there
编辑:这是这个问题的重复:Pandas: Add multiple empty columns to DataFrame但是我也保留了这个,因为这里接受的答案是我正在寻找的简单解决方案,而他并没有接受那里的答案
采纳答案by Fabian Ying
回答by Rabin Lama Dong
import pandas as pd
new_cols = ['new_1', 'new_2', 'new_3']
df = pd.DataFrame.from_records([(0, 0, 0)], columns=new_cols)
Is this what you're looking for ?
这是您要找的吗?
回答by Praveen KR
We can use the Apply function to loop through the columns in the dataframe and assigning each of the element to a new field for instance for a list in a dataframe with a list named keys
我们可以使用 Apply 函数循环遍历数据帧中的列,并将每个元素分配给一个新字段,例如数据帧中的列表具有名为键的列表
[10,20,30]
In your case since its all 0 we can directly assign them as 0 instead of looping through. But if we have values we can populate them as below ...
在你的情况下,因为它都是 0,我们可以直接将它们分配为 0 而不是循环。但是如果我们有值,我们可以按如下方式填充它们......
df['new_01']=df['keys'].apply(lambda x: x[0])
df['new_02']=df['keys'].apply(lambda x: x[1])
df['new_03']=df['keys'].apply(lambda x: x[2])
回答by Nordle
Try looping through the column names before creating the column:
在创建列之前尝试遍历列名:
for col in new_cols:
df[col] = 0
回答by jezrael
Use assign
by dictionary:
assign
按字典使用:
df = pd.DataFrame({
'A': ['a','a','a','a','b','b','b','c','d'],
'B': list(range(9))
})
print (df)
0 a 0
1 a 1
2 a 2
3 a 3
4 b 4
5 b 5
6 b 6
7 c 7
8 d 8
new_cols = ['new_1', 'new_2', 'new_3']
df = df.assign(**dict.fromkeys(new_cols, 0))
print (df)
A B new_1 new_2 new_3
0 a 0 0 0 0
1 a 1 0 0 0
2 a 2 0 0 0
3 a 3 0 0 0
4 b 4 0 0 0
5 b 5 0 0 0
6 b 6 0 0 0
7 c 7 0 0 0
8 d 8 0 0 0