Python 使用 Keras np_utils.to_categorical 的问题

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/41494625/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-20 01:04:48  来源:igfitidea点击:

Issues using Keras np_utils.to_categorical

pythonkeras

提问by Eduardo

I'm trying to make an array of one-hot vector of integers into an array of one-hot vector that keras will be able to use to fit my model. Here's the relevant part of the code:

我正在尝试将整数的 one-hot 向量数组转换为 keras 能够用于拟合我的模型的 one-hot 向量数组。这是代码的相关部分:

Y_train = np.hstack(np.asarray(dataframe.output_vector)).reshape(len(dataframe),len(output_cols))
dummy_y = np_utils.to_categorical(Y_train)

Below is an image showing what Y_trainand dummy_yactually are.

下面是一张图片,显示了什么Y_traindummy_y实际上是什么。

I couldn't find any documentation for to_categoricalthat could help me.

我找不到任何to_categorical可以帮助我的文档。

Thanks in advance.

提前致谢。

回答by yardstick17

np.utils.to_categoricalis used to convert array of labeled data(from 0 to nb_classes-1) to one-hot vector.

np.utils.to_categorical用于将标记数据数组(从 0 到 nb_classes-1)转换为单热向量。

The official doc with an example.

带有示例的官方文档。

In [1]: from keras.utils import np_utils # from keras import utils as np_utils
Using Theano backend.

In [2]: np_utils.to_categorical?
Signature: np_utils.to_categorical(y, num_classes=None)
Docstring:
Convert class vector (integers from 0 to nb_classes) to binary class matrix, for use with categorical_crossentropy.

# Arguments
    y: class vector to be converted into a matrix
    nb_classes: total number of classes

# Returns
    A binary matrix representation of the input.
File:      /usr/local/lib/python3.5/dist-packages/keras/utils/np_utils.py
Type:      function

In [3]: y_train = [1, 0, 3, 4, 5, 0, 2, 1]

In [4]: """ Assuming the labeled dataset has total six classes (0 to 5), y_train is the true label array """

In [5]: np_utils.to_categorical(y_train, num_classes=6)
Out[5]:
array([[ 0.,  1.,  0.,  0.,  0.,  0.],
       [ 1.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  1.],
       [ 1.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.,  0.]])

回答by Pranzell

from keras.utils.np_utils import to_categorical

to_categorical(0, max_value_of_array)

It assumes the class values were in string and you will be label encoding them, hence starting everytime from 0 to n-classes.

它假设类值在字符串中,并且您将对它们进行标签编码,因此每次从 0 到 n 类开始。

for the same example:- consider an array of {1,2,3,4,2}

The output will be [zero value, one value, two value, three value, four value]

array([[ 0.,  1.,  0., 0., 0.],
       [ 0.,  0.,  1., 0., 0.],
       [ 0.,  0.,  0., 1., 0.],
       [ 0.,  0.,  0., 0., 1.],
       [ 0.,  0.,  1., 0., 0.]],

Let's look at another example:-

让我们再看一个例子:-

Again, for an array having 3 classes, Y = {4, 8, 9, 4, 9}

to_categorical(Y) will output

array([[0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0. ],
       [0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0. ],
       [0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1. ],
       [0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0. ],
       [0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1. ]]