C++ 如何转换 RGB -> YUV -> RGB(双向)
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/17892346/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to convert RGB -> YUV -> RGB (both ways)
提问by Camille Goudeseune
I want a pair of conversion algorithms, one from RGB to YUV, the other from YUV to RGB, that are inverses of each other. That is, a round-trip conversion should leave the value unchanged. (If you like, replace YUV with Y'UV, YUV, YCbCr, YPbPr.)
我想要一对转换算法,一个从 RGB 到 YUV,另一个从 YUV 到 RGB,它们是彼此相反的。也就是说,往返转换应该保持值不变。(如果您愿意,可以将 YUV 替换为 Y'UV、YUV、YCbCr、YPbPr。)
Does such a thing exist? If so, what is it?
这样的事情存在吗?如果是,那是什么?
Posted solutions (How to perform RGB->YUV conversion in C/C++?, http://www.fourcc.org/fccyvrgb.php, http://en.wikipedia.org/wiki/YUV) are only inverses (the two 3x3 matrices are inverses), when omitting the clamping to [0,255]. But omitting that clamping allows things like negative luminance, which plays merry havoc with image processing in YUV space. Retaining the clamping makes the conversion nonlinear, which makes it tricky to define an inverse.
发布的解决方案(如何在 C/C++ 中执行 RGB->YUV 转换?,http://www.fourcc.org/fccyvrgb.php,http: //en.wikipedia.org/wiki/YUV)只是逆(两个 3x3 矩阵是逆矩阵),当省略对 [0,255] 的钳位时。但是省略这种钳位会导致负亮度之类的事情,这对 YUV 空间中的图像处理造成了极大的破坏。保留钳位使转换非线性,这使得定义逆变得棘手。
采纳答案by Camille Goudeseune
Yes, invertible transformations exist.
是的,存在可逆变换。
equasys GmbHposted invertible transformations from RGB to YUV, YCbCr, and YPbPr, along with explanations of which situation each is appropriate for, what this clamping is really about, and links to references. (Like a good SO answer.)
equasys GmbH发布了从 RGB 到 YUV、YCbCr 和 YPbPr 的可逆转换,并解释了每种情况适用于哪种情况、这种钳位的真正含义以及参考链接。(就像一个很好的答案。)
For my own application (jpg images, not analog voltages) YCbCr was appropriate, so I wrote code for those two transformations. Indeed, there-and-back-again values differed by less than 1 part in 256, for many images; and the before-and-after images were visually indistinguishable.
对于我自己的应用程序(jpg 图像,而不是模拟电压)YCbCr 是合适的,所以我为这两个转换编写了代码。事实上,对于许多图像,来回值相差不到 256 分之一;并且前后图像在视觉上无法区分。
PIL's colour space conversion YCbCr -> RGBgets credit for mentioning equasys's web page.
PIL 的色彩空间转换 YCbCr -> RGB因提及 equasys 的网页而受到赞誉。
Other answers, that could doubtfully improve on equasys's precision and concision:
其他答案,这可能会提高 equasys 的精确度和简洁度:
https://code.google.com/p/imagestack/includes rgb_to_x and x_to_rgb functions, but I didn't try to compile and test them.
Cory Nelson's answer links to code with similar functions, but it says that inversion's not possible in general, contradicting equasys.
The source code of FFmpeg, OpenCV, VLFeat, or ImageMagick.
https://code.google.com/p/imagestack/包括 rgb_to_x 和 x_to_rgb 函数,但我没有尝试编译和测试它们。
Cory Nelson 的答案链接到具有类似功能的代码,但它表示一般情况下不可能反转,这与 equasys 相矛盾。
FFmpeg、OpenCV、VLFeat 或 ImageMagick 的源代码。
2019 Edit:Here's the C code from github, mentioned in my comment.
2019 年编辑:这是我的评论中提到的来自 github 的 C 代码。
void YUVfromRGB(double& Y, double& U, double& V, const double R, const double G, const double B)
{
Y = 0.257 * R + 0.504 * G + 0.098 * B + 16;
U = -0.148 * R - 0.291 * G + 0.439 * B + 128;
V = 0.439 * R - 0.368 * G - 0.071 * B + 128;
}
void RGBfromYUV(double& R, double& G, double& B, double Y, double U, double V)
{
Y -= 16;
U -= 128;
V -= 128;
R = 1.164 * Y + 1.596 * V;
G = 1.164 * Y - 0.392 * U - 0.813 * V;
B = 1.164 * Y + 2.017 * U;
}
回答by Cameron Lowell Palmer
RGB to YUV and back again
RGB 到 YUV 并再次返回
There is a nice diagram over on Wikipedia on the topic of YUVwhich depicts the layout of YUV420p. However, if you're like me you want NV21, sometimes called YUV420sp, which interleaves the V and U components in a single plane so in this case that diagram is wrong, but it gives you the intuition on how it works.
维基百科上有一个关于YUV主题的很好的图表,它描述了 YUV420p 的布局。但是,如果您像我一样需要 NV21,有时也称为 YUV420sp,它将 V 和 U 分量交错在一个平面中,因此在这种情况下,该图是错误的,但它可以让您直观了解它是如何工作的。
This format (NV21) is the standard picture format on Android camera preview. YUV 4:2:0 planar image, with 8 bit Y samples, followed by interleaved V/U plane with 8bit 2x2 subsampled chroma samples.
此格式 (NV21) 是 Android 相机预览中的标准图片格式。YUV 4:2:0 平面图像,具有 8 位 Y 样本,后跟具有 8 位 2x2 子采样色度样本的交错 V/U 平面。
So a lot of code I've seen just starts coding literally to this specification without taking into account Endianess. Furthermore, they tend to only support YUV to RGB and only one or two formats. I however, wanted something a little more trustworthy and it turns out C++ code taken from the Android source code repository does the trick. It is pretty much straight C++ and should be easily used in any project.
所以我看到的很多代码只是按照这个规范开始编码,而没有考虑Endianess。此外,它们往往只支持 YUV 到 RGB,并且只支持一种或两种格式。然而,我想要一些更值得信赖的东西,结果证明从 Android 源代码库中提取的 C++ 代码可以解决问题。它几乎是直接的 C++,应该很容易在任何项目中使用。
JNI/C++ code that takes an RGB565 image and converts it to NV21
获取 RGB565 图像并将其转换为 NV21 的 JNI/C++ 代码
From Java in this case, but easily C or C++ you pass in an array of bytes containing the RGB565 image and output an NV21 byte array.
在这种情况下来自 Java,但很容易通过 C 或 C++ 传入一个包含 RGB565 图像的字节数组并输出一个 NV21 字节数组。
#include <jni.h>
#include <cstring>
#include <cstdint>
#include "Converters.h"
#define JNI(X) JNIEXPORT Java_algorithm_ImageConverter_##X
#ifdef __cplusplus
extern "C" {
#endif
void JNI(RGB565ToNV21)(JNIEnv *env, jclass *, jbyteArray aRGB565in, jbyteArray aYUVout, jint width, jint height) {
//get jbyte array into C space from JVN
jbyte *rgb565Pixels = env->GetByteArrayElements(aRGB565in, NULL);
jbyte *yuv420sp = env->GetByteArrayElements(aYUVout, NULL);
size_t pixelCount = width * height;
uint16_t *rgb = (uint16_t *) rgb565Pixels;
// This format (NV21) is the standard picture format on Android camera preview. YUV 4:2:0 planar
// image, with 8 bit Y samples, followed by interleaved V/U plane with 8bit 2x2 subsampled
// chroma samples.
int uvIndex = pixelCount;
for (int row = 0; row < height; row++) {
for (int column = 0; column < width; column++) {
int pixelIndex = row * width + column;
uint8_t y = 0;
uint8_t u = 0;
uint8_t v = 0;
chroma::RGB565ToYUV(rgb[pixelIndex], &y, &u, &v);
yuv420sp[pixelIndex] = y;
if (row % 2 == 0 && pixelIndex % 2 == 0) {
#if __BYTE_ORDER == __LITTLE_ENDIAN
yuv420sp[uvIndex++] = u;
yuv420sp[uvIndex++] = v;
#else
yuv420sp[uvIndex++] = v;
yuv420sp[uvIndex++] = u;
#endif
}
}
}
//release temp reference of jbyte array
env->ReleaseByteArrayElements(aYUVout, yuv420sp, 0);
env->ReleaseByteArrayElements(aRGB565in, rgb565Pixels, 0);
}
#ifdef __cplusplus
}
#endif
Converters.h
转换器.h
As you will see in the header there are many different conversion options available to/from any number of formats.
正如您将在标题中看到的,有许多不同的转换选项可用于任意数量的格式。
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef HW_EMULATOR_CAMERA_CONVERTERS_H
#define HW_EMULATOR_CAMERA_CONVERTERS_H
#include <endian.h>
#ifndef __BYTE_ORDER
#error "could not determine byte order"
#endif
/*
* Contains declaration of framebuffer conversion routines.
*
* NOTE: RGB and big/little endian considerations. Wherever in this code RGB
* pixels are represented as WORD, or DWORD, the color order inside the
* WORD / DWORD matches the one that would occur if that WORD / DWORD would have
* been read from the typecasted framebuffer:
*
* const uint32_t rgb = *reinterpret_cast<const uint32_t*>(framebuffer);
*
* So, if this code runs on the little endian CPU, red color in 'rgb' would be
* masked as 0x000000ff, and blue color would be masked as 0x00ff0000, while if
* the code runs on a big endian CPU, the red color in 'rgb' would be masked as
* 0xff000000, and blue color would be masked as 0x0000ff00,
*/
namespace chroma {
/*
* RGB565 color masks
*/
#if __BYTE_ORDER == __LITTLE_ENDIAN
static const uint16_t kRed5 = 0x001f;
static const uint16_t kGreen6 = 0x07e0;
static const uint16_t kBlue5 = 0xf800;
#else // __BYTE_ORDER
static const uint16_t kRed5 = 0xf800;
static const uint16_t kGreen6 = 0x07e0;
static const uint16_t kBlue5 = 0x001f;
#endif // __BYTE_ORDER
static const uint32_t kBlack16 = 0x0000;
static const uint32_t kWhite16 = kRed5 | kGreen6 | kBlue5;
/*
* RGB32 color masks
*/
#if __BYTE_ORDER == __LITTLE_ENDIAN
static const uint32_t kRed8 = 0x000000ff;
static const uint32_t kGreen8 = 0x0000ff00;
static const uint32_t kBlue8 = 0x00ff0000;
#else // __BYTE_ORDER
static const uint32_t kRed8 = 0x00ff0000;
static const uint32_t kGreen8 = 0x0000ff00;
static const uint32_t kBlue8 = 0x000000ff;
#endif // __BYTE_ORDER
static const uint32_t kBlack32 = 0x00000000;
static const uint32_t kWhite32 = kRed8 | kGreen8 | kBlue8;
/*
* Extracting, and saving color bytes from / to WORD / DWORD RGB.
*/
#if __BYTE_ORDER == __LITTLE_ENDIAN
/* Extract red, green, and blue bytes from RGB565 word. */
#define R16(rgb) static_cast<uint8_t>((rgb) & kRed5)
#define G16(rgb) static_cast<uint8_t>(((rgb) & kGreen6) >> 5)
#define B16(rgb) static_cast<uint8_t>(((rgb) & kBlue5) >> 11)
/* Make 8 bits red, green, and blue, extracted from RGB565 word. */
#define R16_32(rgb) static_cast<uint8_t>((((rgb) & kRed5) << 3) | (((rgb) & kRed5) >> 2))
#define G16_32(rgb) static_cast<uint8_t>((((rgb) & kGreen6) >> 3) | (((rgb) & kGreen6) >> 9))
#define B16_32(rgb) static_cast<uint8_t>((((rgb) & kBlue5) >> 8) | (((rgb) & kBlue5) >> 14))
/* Extract red, green, and blue bytes from RGB32 dword. */
#define R32(rgb) static_cast<uint8_t>((rgb) & kRed8)
#define G32(rgb) static_cast<uint8_t>((((rgb) & kGreen8) >> 8) & 0xff)
#define B32(rgb) static_cast<uint8_t>((((rgb) & kBlue8) >> 16) & 0xff)
/* Build RGB565 word from red, green, and blue bytes. */
#define RGB565(r, g, b) static_cast<uint16_t>((((static_cast<uint16_t>(b) << 6) | (g)) << 5) | (r))
/* Build RGB32 dword from red, green, and blue bytes. */
#define RGB32(r, g, b) static_cast<uint32_t>((((static_cast<uint32_t>(b) << 8) | (g)) << 8) | (r))
#else // __BYTE_ORDER
/* Extract red, green, and blue bytes from RGB565 word. */
#define R16(rgb) static_cast<uint8_t>(((rgb) & kRed5) >> 11)
#define G16(rgb) static_cast<uint8_t>(((rgb) & kGreen6) >> 5)
#define B16(rgb) static_cast<uint8_t>((rgb) & kBlue5)
/* Make 8 bits red, green, and blue, extracted from RGB565 word. */
#define R16_32(rgb) static_cast<uint8_t>((((rgb) & kRed5) >> 8) | (((rgb) & kRed5) >> 14))
#define G16_32(rgb) static_cast<uint8_t>((((rgb) & kGreen6) >> 3) | (((rgb) & kGreen6) >> 9))
#define B16_32(rgb) static_cast<uint8_t>((((rgb) & kBlue5) << 3) | (((rgb) & kBlue5) >> 2))
/* Extract red, green, and blue bytes from RGB32 dword. */
#define R32(rgb) static_cast<uint8_t>(((rgb) & kRed8) >> 16)
#define G32(rgb) static_cast<uint8_t>(((rgb) & kGreen8) >> 8)
#define B32(rgb) static_cast<uint8_t>((rgb) & kBlue8)
/* Build RGB565 word from red, green, and blue bytes. */
#define RGB565(r, g, b) static_cast<uint16_t>((((static_cast<uint16_t>(r) << 6) | g) << 5) | b)
/* Build RGB32 dword from red, green, and blue bytes. */
#define RGB32(r, g, b) static_cast<uint32_t>((((static_cast<uint32_t>(r) << 8) | g) << 8) | b)
#endif // __BYTE_ORDER
/* An union that simplifies breaking 32 bit RGB into separate R, G, and B colors.
*/
typedef union RGB32_t {
uint32_t color;
struct {
#if __BYTE_ORDER == __LITTLE_ENDIAN
uint8_t r; uint8_t g; uint8_t b; uint8_t a;
#else // __BYTE_ORDER
uint8_t a; uint8_t b; uint8_t g; uint8_t r;
#endif // __BYTE_ORDER
};
} RGB32_t;
/* Clips a value to the unsigned 0-255 range, treating negative values as zero.
*/
static __inline__ int
clamp(int x)
{
if (x > 255) return 255;
if (x < 0) return 0;
return x;
}
/********************************************************************************
* Basics of RGB -> YUV conversion
*******************************************************************************/
/*
* RGB -> YUV conversion macros
*/
#define RGB2Y(r, g, b) (uint8_t)(((66 * (r) + 129 * (g) + 25 * (b) + 128) >> 8) + 16)
#define RGB2U(r, g, b) (uint8_t)(((-38 * (r) - 74 * (g) + 112 * (b) + 128) >> 8) + 128)
#define RGB2V(r, g, b) (uint8_t)(((112 * (r) - 94 * (g) - 18 * (b) + 128) >> 8) + 128)
/* Converts R8 G8 B8 color to YUV. */
static __inline__ void
R8G8B8ToYUV(uint8_t r, uint8_t g, uint8_t b, uint8_t* y, uint8_t* u, uint8_t* v)
{
*y = RGB2Y((int)r, (int)g, (int)b);
*u = RGB2U((int)r, (int)g, (int)b);
*v = RGB2V((int)r, (int)g, (int)b);
}
/* Converts RGB565 color to YUV. */
static __inline__ void
RGB565ToYUV(uint16_t rgb, uint8_t* y, uint8_t* u, uint8_t* v)
{
R8G8B8ToYUV(R16_32(rgb), G16_32(rgb), B16_32(rgb), y, u, v);
}
/* Converts RGB32 color to YUV. */
static __inline__ void
RGB32ToYUV(uint32_t rgb, uint8_t* y, uint8_t* u, uint8_t* v)
{
RGB32_t rgb_c;
rgb_c.color = rgb;
R8G8B8ToYUV(rgb_c.r, rgb_c.g, rgb_c.b, y, u, v);
}
/********************************************************************************
* Basics of YUV -> RGB conversion.
* Note that due to the fact that guest uses RGB only on preview window, and the
* RGB format that is used is RGB565, we can limit YUV -> RGB conversions to
* RGB565 only.
*******************************************************************************/
/*
* YUV -> RGB conversion macros
*/
/* "Optimized" macros that take specialy prepared Y, U, and V values:
* C = Y - 16
* D = U - 128
* E = V - 128
*/
#define YUV2RO(C, D, E) clamp((298 * (C) + 409 * (E) + 128) >> 8)
#define YUV2GO(C, D, E) clamp((298 * (C) - 100 * (D) - 208 * (E) + 128) >> 8)
#define YUV2BO(C, D, E) clamp((298 * (C) + 516 * (D) + 128) >> 8)
/*
* Main macros that take the original Y, U, and V values
*/
#define YUV2R(y, u, v) clamp((298 * ((y)-16) + 409 * ((v)-128) + 128) >> 8)
#define YUV2G(y, u, v) clamp((298 * ((y)-16) - 100 * ((u)-128) - 208 * ((v)-128) + 128) >> 8)
#define YUV2B(y, u, v) clamp((298 * ((y)-16) + 516 * ((u)-128) + 128) >> 8)
/* Converts YUV color to RGB565. */
static __inline__ uint16_t
YUVToRGB565(int y, int u, int v)
{
/* Calculate C, D, and E values for the optimized macro. */
y -= 16; u -= 128; v -= 128;
const uint16_t r = (YUV2RO(y,u,v) >> 3) & 0x1f;
const uint16_t g = (YUV2GO(y,u,v) >> 2) & 0x3f;
const uint16_t b = (YUV2BO(y,u,v) >> 3) & 0x1f;
return RGB565(r, g, b);
}
/* Converts YUV color to RGB32. */
static __inline__ uint32_t
YUVToRGB32(int y, int u, int v)
{
/* Calculate C, D, and E values for the optimized macro. */
y -= 16; u -= 128; v -= 128;
RGB32_t rgb;
rgb.r = YUV2RO(y,u,v) & 0xff;
rgb.g = YUV2GO(y,u,v) & 0xff;
rgb.b = YUV2BO(y,u,v) & 0xff;
return rgb.color;
}
/* YUV pixel descriptor. */
struct YUVPixel {
uint8_t Y;
uint8_t U;
uint8_t V;
inline YUVPixel()
: Y(0), U(0), V(0)
{
}
inline explicit YUVPixel(uint16_t rgb565)
{
RGB565ToYUV(rgb565, &Y, &U, &V);
}
inline explicit YUVPixel(uint32_t rgb32)
{
RGB32ToYUV(rgb32, &Y, &U, &V);
}
inline void get(uint8_t* pY, uint8_t* pU, uint8_t* pV) const
{
*pY = Y; *pU = U; *pV = V;
}
};
/* Converts an YV12 framebuffer to RGB565 framebuffer.
* Param:
* yv12 - YV12 framebuffer.
* rgb - RGB565 framebuffer.
* width, height - Dimensions for both framebuffers.
*/
void YV12ToRGB565(const void* yv12, void* rgb, int width, int height);
/* Converts an YV12 framebuffer to RGB32 framebuffer.
* Param:
* yv12 - YV12 framebuffer.
* rgb - RGB32 framebuffer.
* width, height - Dimensions for both framebuffers.
*/
void YV12ToRGB32(const void* yv12, void* rgb, int width, int height);
/* Converts an YU12 framebuffer to RGB32 framebuffer.
* Param:
* yu12 - YU12 framebuffer.
* rgb - RGB32 framebuffer.
* width, height - Dimensions for both framebuffers.
*/
void YU12ToRGB32(const void* yu12, void* rgb, int width, int height);
/* Converts an NV12 framebuffer to RGB565 framebuffer.
* Param:
* nv12 - NV12 framebuffer.
* rgb - RGB565 framebuffer.
* width, height - Dimensions for both framebuffers.
*/
void NV12ToRGB565(const void* nv12, void* rgb, int width, int height);
/* Converts an NV12 framebuffer to RGB32 framebuffer.
* Param:
* nv12 - NV12 framebuffer.
* rgb - RGB32 framebuffer.
* width, height - Dimensions for both framebuffers.
*/
void NV12ToRGB32(const void* nv12, void* rgb, int width, int height);
/* Converts an NV21 framebuffer to RGB565 framebuffer.
* Param:
* nv21 - NV21 framebuffer.
* rgb - RGB565 framebuffer.
* width, height - Dimensions for both framebuffers.
*/
void NV21ToRGB565(const void* nv21, void* rgb, int width, int height);
/* Converts an NV21 framebuffer to RGB32 framebuffer.
* Param:
* nv21 - NV21 framebuffer.
* rgb - RGB32 framebuffer.
* width, height - Dimensions for both framebuffers.
*/
void NV21ToRGB32(const void* nv21, void* rgb, int width, int height);
}; /* namespace chroma */
#endif /* HW_EMULATOR_CAMERA_CONVERTERS_H */
Converters.cpp
转换器.cpp
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Contains implemenation of framebuffer conversion routines.
*/
#define LOG_NDEBUG 0
#define LOG_TAG "EmulatedCamera_Converter"
#include "Converters.h"
namespace chroma {
static void _YUV420SToRGB565(const uint8_t* Y,
const uint8_t* U,
const uint8_t* V,
int dUV,
uint16_t* rgb,
int width,
int height)
{
const uint8_t* U_pos = U;
const uint8_t* V_pos = V;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x += 2, U += dUV, V += dUV) {
const uint8_t nU = *U;
const uint8_t nV = *V;
*rgb = YUVToRGB565(*Y, nU, nV);
Y++; rgb++;
*rgb = YUVToRGB565(*Y, nU, nV);
Y++; rgb++;
}
if (y & 0x1) {
U_pos = U;
V_pos = V;
} else {
U = U_pos;
V = V_pos;
}
}
}
static void _YUV420SToRGB32(const uint8_t* Y,
const uint8_t* U,
const uint8_t* V,
int dUV,
uint32_t* rgb,
int width,
int height)
{
const uint8_t* U_pos = U;
const uint8_t* V_pos = V;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x += 2, U += dUV, V += dUV) {
const uint8_t nU = *U;
const uint8_t nV = *V;
*rgb = YUVToRGB32(*Y, nU, nV);
Y++; rgb++;
*rgb = YUVToRGB32(*Y, nU, nV);
Y++; rgb++;
}
if (y & 0x1) {
U_pos = U;
V_pos = V;
} else {
U = U_pos;
V = V_pos;
}
}
}
void YV12ToRGB565(const void* yv12, void* rgb, int width, int height)
{
const int pix_total = width * height;
const uint8_t* Y = reinterpret_cast<const uint8_t*>(yv12);
const uint8_t* U = Y + pix_total;
const uint8_t* V = U + pix_total / 4;
_YUV420SToRGB565(Y, U, V, 1, reinterpret_cast<uint16_t*>(rgb), width, height);
}
void YV12ToRGB32(const void* yv12, void* rgb, int width, int height)
{
const int pix_total = width * height;
const uint8_t* Y = reinterpret_cast<const uint8_t*>(yv12);
const uint8_t* V = Y + pix_total;
const uint8_t* U = V + pix_total / 4;
_YUV420SToRGB32(Y, U, V, 1, reinterpret_cast<uint32_t*>(rgb), width, height);
}
void YU12ToRGB32(const void* yu12, void* rgb, int width, int height)
{
const int pix_total = width * height;
const uint8_t* Y = reinterpret_cast<const uint8_t*>(yu12);
const uint8_t* U = Y + pix_total;
const uint8_t* V = U + pix_total / 4;
_YUV420SToRGB32(Y, U, V, 1, reinterpret_cast<uint32_t*>(rgb), width, height);
}
/* Common converter for YUV 4:2:0 interleaved to RGB565.
* y, u, and v point to Y,U, and V panes, where U and V values are interleaved.
*/
static void _NVXXToRGB565(const uint8_t* Y,
const uint8_t* U,
const uint8_t* V,
uint16_t* rgb,
int width,
int height)
{
_YUV420SToRGB565(Y, U, V, 2, rgb, width, height);
}
/* Common converter for YUV 4:2:0 interleaved to RGB32.
* y, u, and v point to Y,U, and V panes, where U and V values are interleaved.
*/
static void _NVXXToRGB32(const uint8_t* Y,
const uint8_t* U,
const uint8_t* V,
uint32_t* rgb,
int width,
int height)
{
_YUV420SToRGB32(Y, U, V, 2, rgb, width, height);
}
void NV12ToRGB565(const void* nv12, void* rgb, int width, int height)
{
const int pix_total = width * height;
const uint8_t* y = reinterpret_cast<const uint8_t*>(nv12);
_NVXXToRGB565(y, y + pix_total, y + pix_total + 1,
reinterpret_cast<uint16_t*>(rgb), width, height);
}
void NV12ToRGB32(const void* nv12, void* rgb, int width, int height)
{
const int pix_total = width * height;
const uint8_t* y = reinterpret_cast<const uint8_t*>(nv12);
_NVXXToRGB32(y, y + pix_total, y + pix_total + 1,
reinterpret_cast<uint32_t*>(rgb), width, height);
}
void NV21ToRGB565(const void* nv21, void* rgb, int width, int height)
{
const int pix_total = width * height;
const uint8_t* y = reinterpret_cast<const uint8_t*>(nv21);
_NVXXToRGB565(y, y + pix_total + 1, y + pix_total,
reinterpret_cast<uint16_t*>(rgb), width, height);
}
void NV21ToRGB32(const void* nv21, void* rgb, int width, int height)
{
const int pix_total = width * height;
const uint8_t* y = reinterpret_cast<const uint8_t*>(nv21);
_NVXXToRGB32(y, y + pix_total + 1, y + pix_total,
reinterpret_cast<uint32_t*>(rgb), width, height);
}
}; /* namespace chroma */
回答by Cory Nelson
Once you clamp, you're done. They become a different color and you can't go back. I've written some of my own code to convert between all of those and moreif you'd like to see, but it won't help inverse clamped colors back to their originals.
一旦你夹紧,你就完成了。它们变成了不同的颜色,你不能回去。我已经编写了一些我自己的代码来在所有这些和更多之间转换,如果你想看的话,但它无助于将钳制的颜色反向恢复到它们的原始状态。