Scala 如何计算列表中出现的次数
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/11448685/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Scala how can I count the number of occurrences in a list
提问by Gatspy
val list = List(1,2,4,2,4,7,3,2,4)
I want to implement it like this: list.count(2)(returns 3).
我想像这样实现它:(list.count(2)返回 3)。
回答by ohruunuruus
A somewhat cleaner version of one of the other answers is:
其他答案之一的更简洁版本是:
val s = Seq("apple", "oranges", "apple", "banana", "apple", "oranges", "oranges")
s.groupBy(identity).mapValues(_.size)
giving a Mapwith a count for each item in the original sequence:
为Map原始序列中的每个项目提供一个计数:
Map(banana -> 1, oranges -> 3, apple -> 3)
The question asks how to find the count of a specific item. With this approach, the solution would require mapping the desired element to its count value as follows:
该问题询问如何查找特定项目的计数。使用这种方法,解决方案需要将所需元素映射到其计数值,如下所示:
s.groupBy(identity).mapValues(_.size)("apple")
回答by xiefei
scala collections do have count: list.count(_ == 2)
Scala 集合确实有count:list.count(_ == 2)
回答by KWA
I had the same problem as Sharath Prabhal, and I got another (to me clearer) solution :
我和 Sharath Prabhal 遇到了同样的问题,我得到了另一个(对我来说更清晰)的解决方案:
val s = Seq("apple", "oranges", "apple", "banana", "apple", "oranges", "oranges")
s.groupBy(l => l).map(t => (t._1, t._2.length))
With as result :
结果是:
Map(banana -> 1, oranges -> 3, apple -> 3)
回答by noego
list.groupBy(i=>i).mapValues(_.size)
gives
给
Map[Int, Int] = Map(1 -> 1, 2 -> 3, 7 -> 1, 3 -> 1, 4 -> 3)
Note that you can replace (i=>i)with built in identityfunction:
请注意,您可以(i=>i)使用内置identity函数替换:
list.groupBy(identity).mapValues(_.size)
回答by AndreasScheinert
val list = List(1, 2, 4, 2, 4, 7, 3, 2, 4)
// Using the provided count method this would yield the occurrences of each value in the list:
l map(x => l.count(_ == x))
List[Int] = List(1, 3, 3, 3, 3, 1, 1, 3, 3)
// This will yield a list of pairs where the first number is the number from the original list and the second number represents how often the first number occurs in the list:
l map(x => (x, l.count(_ == x)))
// outputs => List[(Int, Int)] = List((1,1), (2,3), (4,3), (2,3), (4,3), (7,1), (3,1), (2,3), (4,3))
回答by Xavier Guihot
Starting Scala 2.13, the groupMapReducemethod does that in one pass through the list:
从一开始Scala 2.13,groupMapReduce方法就完成了对列表的一次传递:
// val seq = Seq("apple", "oranges", "apple", "banana", "apple", "oranges", "oranges")
seq.groupMapReduce(identity)(_ => 1)(_ + _)
// immutable.Map[String,Int] = Map(banana -> 1, oranges -> 3, apple -> 3)
seq.groupMapReduce(identity)(_ => 1)(_ + _)("apple")
// Int = 3
This:
这:
groups list elements (group part of groupMapReduce)maps each grouped value occurrence to 1 (map part of groupMapReduce)reduces values within a group of values (_ + _) by summing them (reduce part of groupMapReduce).
groups 列表元素(组MapReduce 的组部分)maps 每个分组值出现为 1(组MapReduce 的映射部分)reduce_ + _通过对一组值 ( ) 中的值进行求和(减少 groupMap Reduce 的一部分)。
This is a one-pass versionof what can be translated by:
这是可以通过以下方式翻译的内容的一次性版本:
seq.groupBy(identity).mapValues(_.map(_ => 1).reduce(_ + _))
回答by Sharath Prabhal
I ran into the same problem but wanted to count multiple items in one go..
我遇到了同样的问题,但想一次计算多个项目。
val s = Seq("apple", "oranges", "apple", "banana", "apple", "oranges", "oranges")
s.foldLeft(Map.empty[String, Int]) { (m, x) => m + ((x, m.getOrElse(x, 0) + 1)) }
res1: scala.collection.immutable.Map[String,Int] = Map(apple -> 3, oranges -> 3, banana -> 1)
回答by Erik Kaplun
Short answer:
简答:
import scalaz._, Scalaz._
xs.foldMap(x => Map(x -> 1))
Long answer:
长答案:
Using Scalaz, given.
使用Scalaz,给定。
import scalaz._, Scalaz._
val xs = List('a, 'b, 'c, 'c, 'a, 'a, 'b, 'd)
then all of these (in the order of less simplified to more simplified)
然后所有这些(按照从简化到简化的顺序)
xs.map(x => Map(x -> 1)).foldMap(identity)
xs.map(x => Map(x -> 1)).foldMap()
xs.map(x => Map(x -> 1)).suml
xs.map(_ -> 1).foldMap(Map(_))
xs.foldMap(x => Map(x -> 1))
yield
屈服
Map('b -> 2, 'a -> 3, 'c -> 2, 'd -> 1)
回答by LRLucena
If you want to use it like list.count(2)you have to implement it using an Implicit Class.
如果您想使用它,就像list.count(2)必须使用Implicit Class来实现它一样。
implicit class Count[T](list: List[T]) {
def count(n: T): Int = list.count(_ == n)
}
List(1,2,4,2,4,7,3,2,4).count(2) // returns 3
List(1,2,4,2,4,7,3,2,4).count(5) // returns 0
回答by Val
It is interesting to note that the map with default 0 value, intentionally designed for this case demonstrates the worst performance (and not as concise as groupBy)
有趣的是,默认为 0 值的地图,为这种情况而设计的,表现出最差的性能(而且不像 那样简洁groupBy)
type Word = String
type Sentence = Seq[Word]
type Occurrences = scala.collection.Map[Char, Int]
def woGrouped(w: Word): Occurrences = {
w.groupBy(c => c).map({case (c, list) => (c -> list.length)})
} //> woGrouped: (w: forcomp.threadBug.Word)forcomp.threadBug.Occurrences
def woGetElse0Map(w: Word): Occurrences = {
val map = Map[Char, Int]()
w.foldLeft(map)((m, c) => m + (c -> (m.getOrElse(c, 0) + 1)) )
} //> woGetElse0Map: (w: forcomp.threadBug.Word)forcomp.threadBug.Occurrences
def woDeflt0Map(w: Word): Occurrences = {
val map = Map[Char, Int]().withDefaultValue(0)
w.foldLeft(map)((m, c) => m + (c -> (m(c) + 1)) )
} //> woDeflt0Map: (w: forcomp.threadBug.Word)forcomp.threadBug.Occurrences
def dfltHashMap(w: Word): Occurrences = {
val map = scala.collection.immutable.HashMap[Char, Int]().withDefaultValue(0)
w.foldLeft(map)((m, c) => m + (c -> (m(c) + 1)) )
} //> dfltHashMap: (w: forcomp.threadBug.Word)forcomp.threadBug.Occurrences
def mmDef(w: Word): Occurrences = {
val map = scala.collection.mutable.Map[Char, Int]().withDefaultValue(0)
w.foldLeft(map)((m, c) => m += (c -> (m(c) + 1)) )
} //> mmDef: (w: forcomp.threadBug.Word)forcomp.threadBug.Occurrences
val functions = List("grp" -> woGrouped _, "mtbl" -> mmDef _, "else" -> woGetElse0Map _
, "dfl0" -> woDeflt0Map _, "hash" -> dfltHashMap _
) //> functions : List[(String, String => scala.collection.Map[Char,Int])] = Lis
//| t((grp,<function1>), (mtbl,<function1>), (else,<function1>), (dfl0,<functio
//| n1>), (hash,<function1>))
val len = 100 * 1000 //> len : Int = 100000
def test(len: Int) {
val data: String = scala.util.Random.alphanumeric.take(len).toList.mkString
val firstResult = functions.head._2(data)
def run(f: Word => Occurrences): Int = {
val time1 = System.currentTimeMillis()
val result= f(data)
val time2 = (System.currentTimeMillis() - time1)
assert(result.toSet == firstResult.toSet)
time2.toInt
}
def log(results: Seq[Int]) = {
((functions zip results) map {case ((title, _), r) => title + " " + r} mkString " , ")
}
var groupResults = List.fill(functions.length)(1)
val integrals = for (i <- (1 to 10)) yield {
val results = functions map (f => (1 to 33).foldLeft(0) ((acc,_) => run(f._2)))
println (log (results))
groupResults = (results zip groupResults) map {case (r, gr) => r + gr}
log(groupResults).toUpperCase
}
integrals foreach println
} //> test: (len: Int)Unit
test(len)
test(len * 2)
// GRP 14 , mtbl 11 , else 31 , dfl0 36 , hash 34
// GRP 91 , MTBL 111
println("Done")
def main(args: Array[String]) {
}
produces
产生
grp 5 , mtbl 5 , else 13 , dfl0 17 , hash 17
grp 3 , mtbl 6 , else 14 , dfl0 16 , hash 16
grp 3 , mtbl 6 , else 13 , dfl0 17 , hash 15
grp 4 , mtbl 5 , else 13 , dfl0 15 , hash 16
grp 23 , mtbl 6 , else 14 , dfl0 15 , hash 16
grp 5 , mtbl 5 , else 13 , dfl0 16 , hash 17
grp 4 , mtbl 6 , else 13 , dfl0 16 , hash 16
grp 4 , mtbl 6 , else 13 , dfl0 17 , hash 15
grp 3 , mtbl 5 , else 14 , dfl0 16 , hash 16
grp 3 , mtbl 6 , else 14 , dfl0 16 , hash 16
GRP 5 , MTBL 5 , ELSE 13 , DFL0 17 , HASH 17
GRP 8 , MTBL 11 , ELSE 27 , DFL0 33 , HASH 33
GRP 11 , MTBL 17 , ELSE 40 , DFL0 50 , HASH 48
GRP 15 , MTBL 22 , ELSE 53 , DFL0 65 , HASH 64
GRP 38 , MTBL 28 , ELSE 67 , DFL0 80 , HASH 80
GRP 43 , MTBL 33 , ELSE 80 , DFL0 96 , HASH 97
GRP 47 , MTBL 39 , ELSE 93 , DFL0 112 , HASH 113
GRP 51 , MTBL 45 , ELSE 106 , DFL0 129 , HASH 128
GRP 54 , MTBL 50 , ELSE 120 , DFL0 145 , HASH 144
GRP 57 , MTBL 56 , ELSE 134 , DFL0 161 , HASH 160
grp 7 , mtbl 11 , else 28 , dfl0 31 , hash 31
grp 7 , mtbl 10 , else 28 , dfl0 32 , hash 31
grp 7 , mtbl 11 , else 28 , dfl0 31 , hash 32
grp 7 , mtbl 11 , else 28 , dfl0 31 , hash 33
grp 7 , mtbl 11 , else 28 , dfl0 32 , hash 31
grp 8 , mtbl 11 , else 28 , dfl0 31 , hash 33
grp 8 , mtbl 11 , else 29 , dfl0 38 , hash 35
grp 7 , mtbl 11 , else 28 , dfl0 32 , hash 33
grp 8 , mtbl 11 , else 32 , dfl0 35 , hash 41
grp 7 , mtbl 13 , else 28 , dfl0 33 , hash 35
GRP 7 , MTBL 11 , ELSE 28 , DFL0 31 , HASH 31
GRP 14 , MTBL 21 , ELSE 56 , DFL0 63 , HASH 62
GRP 21 , MTBL 32 , ELSE 84 , DFL0 94 , HASH 94
GRP 28 , MTBL 43 , ELSE 112 , DFL0 125 , HASH 127
GRP 35 , MTBL 54 , ELSE 140 , DFL0 157 , HASH 158
GRP 43 , MTBL 65 , ELSE 168 , DFL0 188 , HASH 191
GRP 51 , MTBL 76 , ELSE 197 , DFL0 226 , HASH 226
GRP 58 , MTBL 87 , ELSE 225 , DFL0 258 , HASH 259
GRP 66 , MTBL 98 , ELSE 257 , DFL0 293 , HASH 300
GRP 73 , MTBL 111 , ELSE 285 , DFL0 326 , HASH 335
Done
It is curious that most concise groupByis faster than even mutable map!
奇怪的是,最简洁groupBy甚至比可变地图还要快!

