如何在python中平滑曲线

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/22988882/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 02:05:42  来源:igfitidea点击:

how to smooth a curve in python

pythonnumpysignal-processinggaussiansmoothing

提问by elviuz

I have an entropy curve (1d numpy array) but this curve has a lot of noise. I would like to delete the noise with a smoothing.

我有一条熵曲线(1d numpy 数组),但这条曲线有很多噪音。我想通过平滑删除噪音。

This is the plot of my curve: curve and noise

这是我的曲线图: 曲线和噪音

I have tried to solve this issue making a convolution product with a Kaiser-Bessel filter:

我试图用 Kaiser-Bessel 滤波器制作卷积产品来解决这个问题:

gaussian_curve = window_kaiser(windowLength, beta=20)  # kaiser filter
gaussian_curve = gaussian_curve / sum(gaussian_curve)

for i in range(0, windows_number):
     start = (i * step) + 1
     end = (i * step) + windowLength
     convolution[i] = (np.convolve(entropy[start:end + 1], gaussian_curve, mode='valid'))
     entropy[i] = convolution[i][0]

but this code returns this error:

但此代码返回此错误:

File "/usr/lib/python2.7/dist-packages/numpy/core/numeric.py", line 822, in convolve
    raise ValueError('v cannot be empty')
ValueError: v cannot be empty

the numpy.convolveoperator with 'valid' mode, returns the central element in the overlap but, in this case, returns an empty element.

具有“有效”模式的numpy.convolve运算符返回重叠中的中心元素,但在这种情况下,返回一个空元素。

is there a simple way to apply a smoothing?

有没有一种简单的方法来应用平滑?

thanks!

谢谢!

采纳答案by elviuz

ok, I solved. I have used another approach: Savitzky-Golay filter

好的,我解决了。我使用了另一种方法:Savitzky-Golay filter

The code:

编码:

def savitzky_golay(y, window_size, order, deriv=0, rate=1):

    import numpy as np
    from math import factorial

    try:
        window_size = np.abs(np.int(window_size))
        order = np.abs(np.int(order))
    except ValueError, msg:
        raise ValueError("window_size and order have to be of type int")
    if window_size % 2 != 1 or window_size < 1:
        raise TypeError("window_size size must be a positive odd number")
    if window_size < order + 2:
        raise TypeError("window_size is too small for the polynomials order")
    order_range = range(order+1)
    half_window = (window_size -1) // 2
    # precompute coefficients
    b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
    m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
    # pad the signal at the extremes with
    # values taken from the signal itself
    firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
    lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
    y = np.concatenate((firstvals, y, lastvals))
    return np.convolve( m[::-1], y, mode='valid')

now, I can type:

现在,我可以输入:

entropy = np.array(entropy)
entropy = savitzky_golay(entropy, 51, 3) # window size 51, polynomial order 3

the result is this:

结果是这样的:

enter image description here

在此处输入图片说明