Python 将二维数组切成更小的二维数组

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/16856788/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 23:49:48  来源:igfitidea点击:

Slice 2d array into smaller 2d arrays

pythonnumpy

提问by TheMeaningfulEngineer

Is there a way to slice a 2d array in numpy into smaller 2d arrays?

有没有办法将 numpy 中的二维数组切成较小的二维数组?

Example

例子

[[1,2,3,4],   ->    [[1,2] [3,4]   
 [5,6,7,8]]          [5,6] [7,8]]

So I basically want to cut down a 2x4 array into 2 2x2 arrays. Looking for a generic solution to be used on images.

所以我基本上想把一个 2x4 的数组切成 2 个 2x2 的数组。寻找用于图像的通用解决方案。

采纳答案by unutbu

You should be able to break your array into "blocks" using some combination of reshapeand swapaxes:

你应该能够打破你的数组转换成“块”使用的一些组合reshapeswapaxes

def blockshaped(arr, nrows, ncols):
    """
    Return an array of shape (n, nrows, ncols) where
    n * nrows * ncols = arr.size

    If arr is a 2D array, the returned array should look like n subblocks with
    each subblock preserving the "physical" layout of arr.
    """
    h, w = arr.shape
    assert h % nrows == 0, "{} rows is not evenly divisble by {}".format(h, nrows)
    assert w % ncols == 0, "{} cols is not evenly divisble by {}".format(w, ncols)
    return (arr.reshape(h//nrows, nrows, -1, ncols)
               .swapaxes(1,2)
               .reshape(-1, nrows, ncols))

turns c

转弯 c

c = np.arange(24).reshape((4,6))
print(c)
# [[ 0  1  2  3  4  5]
#  [ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]
#  [18 19 20 21 22 23]]

into

进入

print(blockshaped(c, 2, 3))
# [[[ 0  1  2]
#   [ 6  7  8]]

#  [[ 3  4  5]
#   [ 9 10 11]]

#  [[12 13 14]
#   [18 19 20]]

#  [[15 16 17]
#   [21 22 23]]]


I've posted an inverse function, unblockshaped, here, and an N-dimensional generalization here. The generalization gives a little more insight into the reasoning behind this algorithm.

我已经张贴了反函数,unblockshaped在这里,和N维泛化这里。泛化让我们更深入地了解该算法背后的推理。



Note that there is also superbatfish's blockwise_view. It arranges the blocks in a different format (using more axes) but it has the advantage of (1) always returning a view and (2) being capable of handing arrays of any dimension.

请注意,还有superbatfish 的 blockwise_view. 它以不同的格式排列块(使用更多轴),但它的优点是(1)总是返回一个视图,(2)能够处理任何维度的数组。

回答by TheMeaningfulEngineer

For now it just works when the big 2d array can be perfectly sliced into equally sized subarrays.

现在它只在大二维数组可以完美地分割成相同大小的子数组时才起作用。

The code bellow slices

代码波纹管切片

a ->array([[ 0,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11],
           [12, 13, 14, 15, 16, 17],
           [18, 19, 20, 21, 22, 23]])

into this

进入这个

block_array->
    array([[[ 0,  1,  2],
            [ 6,  7,  8]],

           [[ 3,  4,  5],
            [ 9, 10, 11]],

           [[12, 13, 14],
            [18, 19, 20]],

           [[15, 16, 17],
            [21, 22, 23]]])

pang qdetermine the block size

pangq确定块大小

Code

代码

a = arange(24)
a = a.reshape((4,6))
m = a.shape[0]  #image row size
n = a.shape[1]  #image column size

p = 2     #block row size
q = 3     #block column size

block_array = []
previous_row = 0
for row_block in range(blocks_per_row):
    previous_row = row_block * p   
    previous_column = 0
    for column_block in range(blocks_per_column):
        previous_column = column_block * q
        block = a[previous_row:previous_row+p,previous_column:previous_column+q]
        block_array.append(block)

block_array = array(block_array)

回答by Francesco Montesano

It seems to me that this is a task for numpy.splitor some variant.

在我看来,这是一个numpy.split或某个变体的任务。

e.g.

例如

a = np.arange(30).reshape([5,6])  #a.shape = (5,6)
a1 = np.split(a,3,axis=1) 
#'a1' is a list of 3 arrays of shape (5,2)
a2 = np.split(a, [2,4])
#'a2' is a list of three arrays of shape (2,5), (2,5), (1,5)

If you have a NxN image you can create, e.g., a list of 2 NxN/2 subimages, and then divide them along the other axis.

如果您有 NxN 图像,您可以创建,例如,2 NxN/2 子图像的列表,然后沿另一个轴划分它们。

numpy.hsplitand numpy.vsplitare also available.

numpy.hsplit并且numpy.vsplit也可用。

回答by JAB

There are some other answers that seem well-suited for your specific case already, but your question piqued my interest in the possibility of a memory-efficient solution usable up to the maximum number of dimensions that numpy supports, and I ended up spending most of the afternoon coming up with possible method. (The method itself is relatively simple, it's just that I still haven't used most of the really fancy features that numpy supports so most of the time was spent researching to see what numpy had available and how much it could do so that I didn't have to do it.)

还有一些其他答案似乎已经非常适合您的特定情况,但是您的问题激起了我对内存高效解决方案的可能性的兴趣,该解决方案可使用最多 numpy 支持的最大维度数,我最终花费了大部分时间下午想出了可能的方法。(方法本身比较简单,只是我还没有使用 numpy 支持的大部分真正花哨的功能,所以大部分时间都花在研究 numpy 有什么可用以及它可以做多少事情上,所以我没有不必这样做。)

def blockgen(array, bpa):
    """Creates a generator that yields multidimensional blocks from the given
array(_like); bpa is an array_like consisting of the number of blocks per axis
(minimum of 1, must be a divisor of the corresponding axis size of array). As
the blocks are selected using normal numpy slicing, they will be views rather
than copies; this is good for very large multidimensional arrays that are being
blocked, and for very large blocks, but it also means that the result must be
copied if it is to be modified (unless modifying the original data as well is
intended)."""
    bpa = np.asarray(bpa) # in case bpa wasn't already an ndarray

    # parameter checking
    if array.ndim != bpa.size:         # bpa doesn't match array dimensionality
        raise ValueError("Size of bpa must be equal to the array dimensionality.")
    if (bpa.dtype != np.int            # bpa must be all integers
        or (bpa < 1).any()             # all values in bpa must be >= 1
        or (array.shape % bpa).any()): # % != 0 means not evenly divisible
        raise ValueError("bpa ({0}) must consist of nonzero positive integers "
                         "that evenly divide the corresponding array axis "
                         "size".format(bpa))


    # generate block edge indices
    rgen = (np.r_[:array.shape[i]+1:array.shape[i]//blk_n]
            for i, blk_n in enumerate(bpa))

    # build slice sequences for each axis (unfortunately broadcasting
    # can't be used to make the items easy to operate over
    c = [[np.s_[i:j] for i, j in zip(r[:-1], r[1:])] for r in rgen]

    # Now to get the blocks; this is slightly less efficient than it could be
    # because numpy doesn't like jagged arrays and I didn't feel like writing
    # a ufunc for it.
    for idxs in np.ndindex(*bpa):
        blockbounds = tuple(c[j][idxs[j]] for j in range(bpa.size))

        yield array[blockbounds]

回答by Saullo G. P. Castro

You question practically the same as this one. You can use the one-liner with np.ndindex()and reshape():

你的问题和这个问题几乎一样。您可以将单行与np.ndindex()和 一起使用reshape()

def cutter(a, r, c):
    lenr = a.shape[0]/r
    lenc = a.shape[1]/c
    np.array([a[i*r:(i+1)*r,j*c:(j+1)*c] for (i,j) in np.ndindex(lenr,lenc)]).reshape(lenr,lenc,r,c)

To create the result you want:

要创建您想要的结果:

a = np.arange(1,9).reshape(2,1)
#array([[1, 2, 3, 4],
#       [5, 6, 7, 8]])

cutter( a, 1, 2 )
#array([[[[1, 2]],
#        [[3, 4]]],
#       [[[5, 6]],
#        [[7, 8]]]])

回答by warmspringwinds

If you want a solution that also handles the cases when the matrix is not equally divided, you can use this:

如果您想要一个也能处理矩阵不等分的情况的解决方案,您可以使用这个:

from operator import add
half_split = np.array_split(input, 2)

res = map(lambda x: np.array_split(x, 2, axis=1), half_split)
res = reduce(add, res)

回答by snoob dogg

Here is a solution based on unutbu's answer that handle case where matrix cannot be equally divided. In this case, it will resize the matrix before using some interpolation. You need OpenCV for this. Note that I had to swap ncolsand nrowsto make it works, didn't figured why.

这是基于 unutbu 的答案的解决方案,该解决方案处理矩阵不能等分的情况。在这种情况下,它会在使用一些插值之前调整矩阵的大小。为此,您需要 OpenCV。请注意,我必须交换ncolsnrows使其正常工作,但不知道为什么。

import numpy as np
import cv2
import math 

def blockshaped(arr, r_nbrs, c_nbrs, interp=cv2.INTER_LINEAR):
    """
    arr      a 2D array, typically an image
    r_nbrs   numbers of rows
    r_cols   numbers of cols
    """

    arr_h, arr_w = arr.shape

    size_w = int( math.floor(arr_w // c_nbrs) * c_nbrs )
    size_h = int( math.floor(arr_h // r_nbrs) * r_nbrs )

    if size_w != arr_w or size_h != arr_h:
        arr = cv2.resize(arr, (size_w, size_h), interpolation=interp)

    nrows = int(size_w // r_nbrs)
    ncols = int(size_h // c_nbrs)

    return (arr.reshape(r_nbrs, ncols, -1, nrows) 
               .swapaxes(1,2)
               .reshape(-1, ncols, nrows))

回答by Aenaon

Some minor enhancement to TheMeaningfulEngineer's answer that handles the case when the big 2d array cannotbe perfectly sliced into equally sized subarrays

对 TheMeaningfulEngineer 的回答进行了一些小改进,用于处理无法将大 2d 数组完美地分割为相同大小的子数组的情况

def blockfy(a, p, q):
    '''
    Divides array a into subarrays of size p-by-q
    p: block row size
    q: block column size
    '''
    m = a.shape[0]  #image row size
    n = a.shape[1]  #image column size

    # pad array with NaNs so it can be divided by p row-wise and by q column-wise
    bpr = ((m-1)//p + 1) #blocks per row
    bpc = ((n-1)//q + 1) #blocks per column
    M = p * bpr
    N = q * bpc

    A = np.nan* np.ones([M,N])
    A[:a.shape[0],:a.shape[1]] = a

    block_list = []
    previous_row = 0
    for row_block in range(bpc):
        previous_row = row_block * p   
        previous_column = 0
        for column_block in range(bpr):
            previous_column = column_block * q
            block = A[previous_row:previous_row+p, previous_column:previous_column+q]

            # remove nan columns and nan rows
            nan_cols = np.all(np.isnan(block), axis=0)
            block = block[:, ~nan_cols]
            nan_rows = np.all(np.isnan(block), axis=1)
            block = block[~nan_rows, :]

            ## append
            if block.size:
                block_list.append(block)

    return block_list

Examples:

例子:

a = np.arange(25)
a = a.reshape((5,5))
out = blockfy(a, 2, 3)

a->
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24]])

out[0] ->
array([[0., 1., 2.],
       [5., 6., 7.]])

out[1]->
array([[3., 4.],
       [8., 9.]])

out[-1]->
array([[23., 24.]])

回答by shahar_m

a = np.random.randint(1, 9, size=(9,9))
out = [np.hsplit(x, 3) for x in np.vsplit(a,3)]
print(a)
print(out)

yields

产量

[[7 6 2 4 4 2 5 2 3]
 [2 3 7 6 8 8 2 6 2]
 [4 1 3 1 3 8 1 3 7]
 [6 1 1 5 7 2 1 5 8]
 [8 8 7 6 6 1 8 8 4]
 [6 1 8 2 1 4 5 1 8]
 [7 3 4 2 5 6 1 2 7]
 [4 6 7 5 8 2 8 2 8]
 [6 6 5 5 6 1 2 6 4]]
[[array([[7, 6, 2],
       [2, 3, 7],
       [4, 1, 3]]), array([[4, 4, 2],
       [6, 8, 8],
       [1, 3, 8]]), array([[5, 2, 3],
       [2, 6, 2],
       [1, 3, 7]])], [array([[6, 1, 1],
       [8, 8, 7],
       [6, 1, 8]]), array([[5, 7, 2],
       [6, 6, 1],
       [2, 1, 4]]), array([[1, 5, 8],
       [8, 8, 4],
       [5, 1, 8]])], [array([[7, 3, 4],
       [4, 6, 7],
       [6, 6, 5]]), array([[2, 5, 6],
       [5, 8, 2],
       [5, 6, 1]]), array([[1, 2, 7],
       [8, 2, 8],
       [2, 6, 4]])]]