Python Spark DataFrame TimestampType - 如何从字段中获取年、月、日值?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/30949202/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 09:12:37  来源:igfitidea点击:

Spark DataFrame TimestampType - how to get Year, Month, Day values from field?

pythontimestampapache-sparkpyspark

提问by curtisp

I have Spark DataFrame with take(5) top rows as follows:

我有带 take(5) 顶行的 Spark DataFrame,如下所示:

[Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=1, value=638.55),
 Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=2, value=638.55),
 Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=3, value=638.55),
 Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=4, value=638.55),
 Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=5, value=638.55)]

It's schema is defined as:

它的模式定义为:

elevDF.printSchema()

root
 |-- date: timestamp (nullable = true)
 |-- hour: long (nullable = true)
 |-- value: double (nullable = true)

How do I get the Year, Month, Day values from the 'date' field?

如何从“日期”字段中获取年、月、日值?

采纳答案by zero323

Since Spark 1.5 you can use a number of date processing functions:

从 Spark 1.5 开始,您可以使用许多日期处理函数:

import datetime
from pyspark.sql.functions import year, month, dayofmonth

elevDF = sc.parallelize([
    (datetime.datetime(1984, 1, 1, 0, 0), 1, 638.55),
    (datetime.datetime(1984, 1, 1, 0, 0), 2, 638.55),
    (datetime.datetime(1984, 1, 1, 0, 0), 3, 638.55),
    (datetime.datetime(1984, 1, 1, 0, 0), 4, 638.55),
    (datetime.datetime(1984, 1, 1, 0, 0), 5, 638.55)
]).toDF(["date", "hour", "value"])

elevDF.select(
    year("date").alias('year'), 
    month("date").alias('month'), 
    dayofmonth("date").alias('day')
).show()
#?+----+-----+---+
#?|year|month|day|
#?+----+-----+---+
#?|1984|    1|  1|
#?|1984|    1|  1|
#?|1984|    1|  1|
#?|1984|    1|  1|
#?|1984|    1|  1|
#?+----+-----+---+


You can use simple mapas with any other RDD:

你可以map像任何其他 RDD 一样使用 simple :

elevDF = sqlContext.createDataFrame(sc.parallelize([
        Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=1, value=638.55),
        Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=2, value=638.55),
        Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=3, value=638.55),
        Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=4, value=638.55),
        Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=5, value=638.55)]))

(elevDF
 .map(lambda (date, hour, value): (date.year, date.month, date.day))
 .collect())

and the result is:

结果是:

[(1984, 1, 1), (1984, 1, 1), (1984, 1, 1), (1984, 1, 1), (1984, 1, 1)]

Btw: datetime.datetimestores an hour anyway so keeping it separately seems to be a waste of memory.

顺便说一句:datetime.datetime无论如何都要存储一个小时,所以单独保存它似乎是在浪费内存。

回答by hamed

You can use functions in pyspark.sql.functions: functions like year, month, etc

您可以在pyspark.sql.functions以下函数中使用函数:year, month,etc

refer to here: https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

参考这里:https: //spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

from pyspark.sql.functions import *

newdf = elevDF.select(year(elevDF.date).alias('dt_year'), month(elevDF.date).alias('dt_month'), dayofmonth(elevDF.date).alias('dt_day'), dayofyear(elevDF.date).alias('dt_dayofy'), hour(elevDF.date).alias('dt_hour'), minute(elevDF.date).alias('dt_min'), weekofyear(elevDF.date).alias('dt_week_no'), unix_timestamp(elevDF.date).alias('dt_int'))

newdf.show()


+-------+--------+------+---------+-------+------+----------+----------+
|dt_year|dt_month|dt_day|dt_dayofy|dt_hour|dt_min|dt_week_no|    dt_int|
+-------+--------+------+---------+-------+------+----------+----------+
|   2015|       9|     6|      249|      0|     0|        36|1441497601|
|   2015|       9|     6|      249|      0|     0|        36|1441497601|
|   2015|       9|     6|      249|      0|     0|        36|1441497603|
|   2015|       9|     6|      249|      0|     1|        36|1441497694|
|   2015|       9|     6|      249|      0|    20|        36|1441498808|
|   2015|       9|     6|      249|      0|    20|        36|1441498811|
|   2015|       9|     6|      249|      0|    20|        36|1441498815|