Python 词干提取(使用 Pandas 数据框)

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/37443138/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 01:17:23  来源:igfitidea点击:

Python stemming (with pandas dataframe)

pythonpandasnlpstemming

提问by Chiel

I created a dataframe with sentences to be stemmed. I would like to use a Snowballstemmer to obtain higher accuracy with my classification algorithm. How can I achieve this?

我创建了一个包含要词干的句子的数据框。我想使用 Snowballstemmer 来通过我的分类算法获得更高的准确性。我怎样才能做到这一点?

import pandas as pd
from nltk.stem.snowball import SnowballStemmer

# Use English stemmer.
stemmer = SnowballStemmer("english")

# Sentences to be stemmed.
data = ["programers program with programing languages", "my code is working so there must be a bug in the optimizer"] 

# Create the Pandas dataFrame.
df = pd.DataFrame(data, columns = ['unstemmed']) 

# Split the sentences to lists of words.
df['unstemmed'] = df['unstemmed'].str.split()

# Make sure we see the full column.
pd.set_option('display.max_colwidth', -1)

# Print dataframe.
df 

+----+--------------------------------------------------------------+
|    | unstemmed                                                    |
|----+--------------------------------------------------------------|
|  0 | ['programers', 'program', 'with', 'programing', 'languages'] |
|  1 | ['my', 'code', 'is', 'working', 'so', 'there', 'must',       |   
|    |  'be', 'a', 'bug', 'in', 'the', 'interpreter']               |
+----+--------------------------------------------------------------+

回答by arthur

You have to apply the stemming on each word and store it into the "stemmed" column.

您必须对每个单词应用词干并将其存储到“词干”列中。

df['stemmed'] = df['unstemmed'].apply(lambda x: [stemmer.stem(y) for y in x]) # Stem every word.
df = df.drop(columns=['unstemmed']) # Get rid of the unstemmed column.
df # Print dataframe.

+----+--------------------------------------------------------------+
|    | stemmed                                                      |
|----+--------------------------------------------------------------|
|  0 | ['program', 'program', 'with', 'program', 'languag']         |
|  1 | ['my', 'code', 'is', 'work', 'so', 'there', 'must',          |   
|    |  'be', 'a', 'bug', 'in', 'the', 'interpret']                 |
+----+--------------------------------------------------------------+