scala 如何在 Spark 中对 RDD 进行排序和限制?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/32947978/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-10-22 07:41:22  来源:igfitidea点击:

How to sort an RDD and limit in Spark?

scalaapache-sparkrdd

提问by etig

I have RDD of Foo class : class Foo( name : String, createDate : Date ). I want an other RDD with 10 percent older Foo. My first idea was to sort by createDateand limit by 0.1*count, but there is no limit function.

我有 Foo 类的 RDD : class Foo( name : String, createDate : Date )。我想要另一个 10% 旧的 RDD Foo。我的第一个想法是createDate按 0.1*count排序和限制,但没有限制功能。

Have you an idea?

你有什么想法吗?

回答by zero323

Assuming Foois a case class like this:

假设Foo是一个这样的案例类:

import java.sql.Date
case class Foo(name: String, createDate: java.sql.Date)
  1. Using plain RDDs:

    import org.apache.spark.rdd.RDD
    import scala.math.Ordering
    
    val rdd: RDD[Foo] = sc
      .parallelize(Seq(
        ("a", "2015-01-03"), ("b", "2014-11-04"), ("a", "2016-08-10"),
        ("a", "2013-11-11"), ("a", "2015-06-19"), ("a", "2009-11-23")))
      .toDF("name", "createDate")
      .withColumn("createDate", $"createDate".cast("date"))
      .as[Foo].rdd
    
    rdd.cache()
    val  n = scala.math.ceil(0.1 * rdd.count).toInt
    
    • data fits into driver memory:

      • and fraction you want is relatively small

        rdd.takeOrdered(n)(Ordering.by[Foo, Long](_.createDate.getTime))
        // Array[Foo] = Array(Foo(a,2009-11-23))
        
      • fraction you want is relatively large:

        rdd.sortBy(_.createDate.getTime).take(n)
        
    • otherwise

      rdd
        .sortBy(_.createDate.getTime)
        .zipWithIndex
        .filter{case (_, idx) => idx < n}
        .keys
      
  2. Using DataFrame (note - this is actually not optimal performance wise due to limit behavior).

    import org.apache.spark.sql.Row
    
    val topN = rdd.toDF.orderBy($"createDate").limit(n)
    topN.show
    
    // +----+----------+
    // |name|createDate|
    // +----+----------+
    // |   a|2009-11-23|
    // +----+----------+
    
    
    // Optionally recreate RDD[Foo]
    topN.map{case Row(name: String, date: Date) => Foo(name, date)} 
    
  1. 使用普通的 RDD:

    import org.apache.spark.rdd.RDD
    import scala.math.Ordering
    
    val rdd: RDD[Foo] = sc
      .parallelize(Seq(
        ("a", "2015-01-03"), ("b", "2014-11-04"), ("a", "2016-08-10"),
        ("a", "2013-11-11"), ("a", "2015-06-19"), ("a", "2009-11-23")))
      .toDF("name", "createDate")
      .withColumn("createDate", $"createDate".cast("date"))
      .as[Foo].rdd
    
    rdd.cache()
    val  n = scala.math.ceil(0.1 * rdd.count).toInt
    
    • 数据适合驱动程序内存:

      • 你想要的分数相对较小

        rdd.takeOrdered(n)(Ordering.by[Foo, Long](_.createDate.getTime))
        // Array[Foo] = Array(Foo(a,2009-11-23))
        
      • 你想要的分数比较大:

        rdd.sortBy(_.createDate.getTime).take(n)
        
    • 否则

      rdd
        .sortBy(_.createDate.getTime)
        .zipWithIndex
        .filter{case (_, idx) => idx < n}
        .keys
      
  2. 使用 DataFrame(注意 - 由于限制行为,这实际上不是最佳性能)。

    import org.apache.spark.sql.Row
    
    val topN = rdd.toDF.orderBy($"createDate").limit(n)
    topN.show
    
    // +----+----------+
    // |name|createDate|
    // +----+----------+
    // |   a|2009-11-23|
    // +----+----------+
    
    
    // Optionally recreate RDD[Foo]
    topN.map{case Row(name: String, date: Date) => Foo(name, date)}