scala 如何从 Spark 中的文本文件创建 DataFrame
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/36766322/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to create a DataFrame from a text file in Spark
提问by Rahul
I have a text file on HDFS and I want to convert it to a Data Frame in Spark.
我在 HDFS 上有一个文本文件,我想将它转换为 Spark 中的数据帧。
I am using the Spark Context to load the file and then try to generate individual columns from that file.
我正在使用 Spark Context 加载文件,然后尝试从该文件生成各个列。
val myFile = sc.textFile("file.txt")
val myFile1 = myFile.map(x=>x.split(";"))
After doing this, I am trying the following operation.
这样做之后,我正在尝试以下操作。
myFile1.toDF()
I am getting an issues since the elements in myFile1 RDD are now array type.
我遇到了一个问题,因为 myFile1 RDD 中的元素现在是数组类型。
How can I solve this issue?
我该如何解决这个问题?
回答by Tzach Zohar
Update- as of Spark 1.6, you can simply use the built-in csv data source:
更新- 从Spark 1.6 开始,您可以简单地使用内置的 csv 数据源:
spark: SparkSession = // create the Spark Session
val df = spark.read.csv("file.txt")
You can also use various options to control the CSV parsing, e.g.:
您还可以使用各种选项来控制 CSV 解析,例如:
val df = spark.read.option("header", "false").csv("file.txt")
For Spark version < 1.6:
The easiest way is to use spark-csv- include it in your dependencies and follow the README, it allows setting a custom delimiter (;), can read CSV headers (if you have them), and it can infer the schema types(with the cost of an extra scan of the data).
对于 Spark 版本 < 1.6:最简单的方法是使用spark-csv- 将其包含在您的依赖项中并遵循自述文件,它允许设置自定义分隔符 ( ;),可以读取 CSV 标头(如果有的话),并且可以推断模式类型(以额外扫描数据为代价)。
Alternatively, if you know the schema you can create a case-class that represents it and map your RDD elements into instances of this class before transforming into a DataFrame, e.g.:
另外,如果你知道的模式,你可以创建一个案例类,它表示它并转化成数据帧,例如在你RDD元素融入到这个类的实例映射:
case class Record(id: Int, name: String)
val myFile1 = myFile.map(x=>x.split(";")).map {
case Array(id, name) => Record(id.toInt, name)
}
myFile1.toDF() // DataFrame will have columns "id" and "name"
回答by Vikas Singh
I have given different ways to create DataFrame from text file
我给出了从文本文件创建 DataFrame 的不同方法
val conf = new SparkConf().setAppName(appName).setMaster("local")
val sc = SparkContext(conf)
raw text file
原始文本文件
val file = sc.textFile("C:\vikas\spark\Interview\text.txt")
val fileToDf = file.map(_.split(",")).map{case Array(a,b,c) =>
(a,b.toInt,c)}.toDF("name","age","city")
fileToDf.foreach(println(_))
spark session without schema
没有模式的火花会话
import org.apache.spark.sql.SparkSession
val sparkSess =
SparkSession.builder().appName("SparkSessionZipsExample")
.config(conf).getOrCreate()
val df = sparkSess.read.option("header",
"false").csv("C:\vikas\spark\Interview\text.txt")
df.show()
spark session with schema
使用模式触发会话
import org.apache.spark.sql.types._
val schemaString = "name age city"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName,
StringType, nullable=true))
val schema = StructType(fields)
val dfWithSchema = sparkSess.read.option("header",
"false").schema(schema).csv("C:\vikas\spark\Interview\text.txt")
dfWithSchema.show()
using sql context
使用 sql 上下文
import org.apache.spark.sql.SQLContext
val fileRdd =
sc.textFile("C:\vikas\spark\Interview\text.txt").map(_.split(",")).map{x
=> org.apache.spark.sql.Row(x:_*)}
val sqlDf = sqlCtx.createDataFrame(fileRdd,schema)
sqlDf.show()
回答by mgaido
If you want to use the toDFmethod, you have to convert your RDDof Array[String]into a RDDof a case class. For example, you have to do:
如果你要使用的toDF方法,你有你的转换RDD的Array[String]成RDD的情况下类。例如,您必须执行以下操作:
case class Test(id:String,filed2:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
回答by Abhijit
You will not able to convert it into data frame until you use implicit conversion.
在使用隐式转换之前,您将无法将其转换为数据框。
val sqlContext = new SqlContext(new SparkContext())
import sqlContext.implicits._
After this only you can convert this to data frame
只有在此之后,您才能将其转换为数据框
case class Test(id:String,filed2:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
回答by Vishal
val df = spark.read.textFile("abc.txt")
case class Abc (amount:Int, types: String, id:Int) //columns and data types
val df2 = df.map(rec=>Amount(rec(0).toInt, rec(1), rec(2).toInt))
rdd2.printSchema
root
|-- amount: integer (nullable = true)
|-- types: string (nullable = true)
|-- id: integer (nullable = true)
回答by Ankita
I know I am quite late to answer this but I have come up with a different answer:
我知道我回答这个问题已经很晚了,但我想出了一个不同的答案:
val rdd = sc.textFile("/home/training/mydata/file.txt")
val text = rdd.map(lines=lines.split(",")).map(arrays=>(ararys(0),arrays(1))).toDF("id","name").show
回答by Ankita
You can read a file to have an RDD and then assign schema to it. Two common ways to creating schema are either using a case class or a Schema object [my preferred one]. Follows the quick snippets of code that you may use.
您可以读取文件以获得 RDD,然后为其分配架构。创建模式的两种常见方法是使用案例类或模式对象 [我的首选]。遵循您可能会使用的快速代码片段。
Case Class approach
案例类方法
case class Test(id:String,name:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
Schema Approach
模式方法
import org.apache.spark.sql.types._
val schemaString = "id name"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, nullable=true))
val schema = StructType(fields)
val dfWithSchema = sparkSess.read.option("header","false").schema(schema).csv("file.txt")
dfWithSchema.show()
The second one is my preferred approach since case class has a limitation of max 22 fields and this will be a problem if your file has more than 22 fields!
第二个是我的首选方法,因为案例类有最多 22 个字段的限制,如果您的文件超过 22 个字段,这将是一个问题!

