提交 spark 作业时,我可以向 python 代码添加参数吗?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/32217160/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Can I add arguments to python code when I submit spark job?
提问by Jinho Yoo
I'm trying to use spark-submit
to execute my python code in spark cluster.
我正在尝试用于spark-submit
在 Spark 集群中执行我的 python 代码。
Generally we run spark-submit
with python code like below.
通常我们spark-submit
使用如下的python代码运行。
# Run a Python application on a cluster
./bin/spark-submit \
--master spark://207.184.161.138:7077 \
my_python_code.py \
1000
But I wanna run my_python_code.py
by passing several arguments Is there smart way to pass arguments?
但我想my_python_code.py
通过传递几个参数来运行有没有聪明的方法来传递参数?
采纳答案by Paul
Yes: Put this in a file called args.py
是:把它放在一个名为 args.py 的文件中
#import sys
print sys.argv
If you run
如果你跑
spark-submit args.py a b c d e
You will see:
你会看见:
['/spark/args.py', 'a', 'b', 'c', 'd', 'e']
回答by Jinho Yoo
Ah, it's possible. http://caen.github.io/hadoop/user-spark.html
啊,有可能。http://caen.github.io/hadoop/user-spark.html
spark-submit \
--master yarn-client \ # Run this as a Hadoop job
--queue <your_queue> \ # Run on your_queue
--num-executors 10 \ # Run with a certain number of executors, for example 10
--executor-memory 12g \ # Specify each executor's memory, for example 12GB
--executor-cores 2 \ # Specify each executor's amount of CPUs, for example 2
job.py ngrams/input ngrams/output
回答by noleto
Even though sys.argv
is a good solution, I still prefer this more proper way of handling line command args in my PySpark jobs:
尽管sys.argv
是一个很好的解决方案,但我仍然更喜欢这种在 PySpark 作业中处理行命令参数的更合适的方法:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--ngrams", help="some useful description.")
args = parser.parse_args()
if args.ngrams:
ngrams = args.ngrams
This way, you can launch your job as follows:
这样,您可以按如下方式启动您的工作:
spark-submit job.py --ngrams 3
More information about argparse
module can be found in Argparse Tutorial
有关argparse
模块的更多信息可以在Argparse 教程中找到
回答by Vivarsh Kondalkar
You can pass the arguments from the spark-submit command and then access them in your code in the following way,
您可以从 spark-submit 命令传递参数,然后通过以下方式在您的代码中访问它们,
sys.argv[1] will get you the first argument, sys.argv[2] the second argument and so on. Refer to the below example,
sys.argv[1] 将获得第一个参数,sys.argv[2] 将获得第二个参数,依此类推。参考下面的例子,
You can create code as below to take the arguments which you will be passing in the spark-submit command,
您可以创建如下代码以获取将在 spark-submit 命令中传递的参数,
import os
import sys
n = int(sys.argv[1])
a = 2
tables = []
for _ in range(n):
tables.append(sys.argv[a])
a += 1
print(tables)
Save the above file as PysparkArg.py and execute the below spark-submit command,
将上述文件另存为 PysparkArg.py 并执行以下 spark-submit 命令,
spark-submit PysparkArg.py 3 table1 table2 table3
Output:
输出:
['table1', 'table2', 'table3']
This piece of code can be used in PySpark jobs where it is required to fetch multiple tables from the database and, the number of tables to be fetched & the table names will be given by the user while executing the spark-submit command.
这段代码可用于 PySpark 作业,其中需要从数据库中获取多个表,并且用户在执行 spark-submit 命令时会给出要获取的表的数量和表名。
回答by trevorgrayson
Aniket Kulkarni's spark-submit args.py a b c d e
seems to suffice, but it's worth mentioning we had issues with optional/named args (e.g --param1).
Aniket Kulkarni 的spark-submit args.py a b c d e
似乎足够了,但值得一提的是我们在可选/命名参数(例如 --param1)方面存在问题。
It appears that double dashes --
will help signal that python optional args follow:
似乎双破折号--
将有助于表明 python 可选参数如下:
spark-submit --sparkarg xxx yourscript.py -- --scriptarg 1 arg1 arg2