Python random.seed():它有什么作用?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/22639587/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 01:20:07  来源:igfitidea点击:

random.seed(): What does it do?

pythonrandomrandom-seed

提问by Ahaan S. Rungta

I am a bit confused on what random.seed()does in Python. For example, why does the below trials do what they do (consistently)?

我对random.seed()Python 中的功能有些困惑。例如,为什么下面的试验会(一致地)做他们所做的事情?

>>> import random
>>> random.seed(9001)
>>> random.randint(1, 10)
1
>>> random.randint(1, 10)
3
>>> random.randint(1, 10)
6
>>> random.randint(1, 10)
6
>>> random.randint(1, 10)
7

I couldn't find good documentation on this.

我找不到这方面的好文档。

采纳答案by Eric Finn

Pseudo-random number generators work by performing some operation on a value. Generally this value is the previous number generated by the generator. However, the first time you use the generator, there is no previous value.

伪随机数生成器通过对值执行一些操作来工作。通常,此值是生成器生成的前一个数字。但是,第一次使用生成器时,没有以前的值。

Seeding a pseudo-random number generator gives it its first "previous" value. Each seed value will correspond to a sequence of generated values for a given random number generator. That is, if you provide the same seed twice, you get the same sequence of numbers twice.

为伪随机数生成器做种子会为其提供第一个“前一个”值。每个种子值将对应于给定随机数生成器的一系列生成值。也就是说,如果您提供相同的种子两次,您将获得两次相同的数字序列。

Generally, you want to seed your random number generator with some value that will change each execution of the program. For instance, the current time is a frequently-used seed. The reason why this doesn't happen automatically is so that if you want, you can provide a specific seed to get a known sequence of numbers.

通常,您希望为随机数生成器设置一些值,该值会改变程序的每次执行。例如,当前时间是一个经常使用的种子。这不会自动发生的原因是,如果您愿意,您可以提供特定的种子来获得已知的数字序列。

回答by suavidas

In this case, random is actually pseudo-random. Given a seed, it will generate numbers with an equal distribution. But with the same seed, it will generate the same number sequence every time. If you want it to change, you'll have to change your seed. A lot of people like to generate a seed based on the current time or something.

在这种情况下,随机实际上是伪随机。给定一个种子,它将生成具有相等分布的数字。但是使用相同的种子,它每次都会生成相同的数字序列。如果你想改变它,你就必须改变你的种子。很多人喜欢根据当前时间或其他东西生成种子。

回答by Ritesh Karwa

All the other answers don't seem to explain the use of random.seed(). Here is a simple example (source):

所有其他答案似乎都没有解释 random.seed() 的使用。这是一个简单的例子(来源):

import random
random.seed( 3 )
print "Random number with seed 3 : ", random.random() #will generate a random number 
#if you want to use the same random number once again in your program
random.seed( 3 )
random.random()   # same random number as before

回答by Ritesh Karwa

Here is a small test that demonstrates that feeding the seed()method with the same argument will cause the same pseudo-random result:

这是一个小测试,它演示了seed()使用相同的参数提供方法将导致相同的伪随机结果:

# testing random.seed()

import random

def equalityCheck(l):
    state=None
    x=l[0]
    for i in l:
        if i!=x:
            state=False
            break
        else:
            state=True
    return state


l=[]

for i in range(1000):
    random.seed(10)
    l.append(random.random())

print "All elements in l are equal?",equalityCheck(l)

回答by Yogesh

>>> random.seed(9001)   
>>> random.randint(1, 10)  
1     
>>> random.seed(9001)     
>>> random.randint(1, 10)    
1           
>>> random.seed(9001)          
>>> random.randint(1, 10)                 
1                  
>>> random.seed(9001)         
>>> random.randint(1, 10)          
1     
>>> random.seed(9002)                
>>> random.randint(1, 10)             
3

You try this. Let's say 'random.seed' gives a value to random value generator ('random.randint()') which generates these values on the basis of this seed. One of the must properties of random numbers is that they should be reproducible. Once you put same seed you get the same pattern of random numbers. So you are generating them right from the start again. You give a different seed it starts with a different initial (above 3).

你试试这个。假设 'random.seed' 为随机值生成器 ('random.randint()') 提供一个值,该生成器基于此种子生成这些值。随机数的必备属性之一是它们应该是可重现的。放置相同的种子后,您将获得相同的随机数模式。所以你又从头开始生成它们。你给一个不同的种子,它以不同的首字母开头(大于 3)。

You have given a seed now it will generate random numbers between 1 and 10 one after another. So you can assume one set of numbers for one seed value.

您现在已经给了一个种子,它将一个接一个地生成 1 到 10 之间的随机数。因此,您可以为一个种子值假设一组数字。

回答by u5844373

Imho, it is used to generate same random course result when you use random.seed(samedigit)again.

Imho,它用于在您random.seed(samedigit)再次使用时生成相同的随机课程结果。

In [47]: random.randint(7,10)

Out[47]: 9


In [48]: random.randint(7,10)

Out[48]: 9


In [49]: random.randint(7,10)

Out[49]: 7


In [50]: random.randint(7,10)

Out[50]: 10


In [51]: random.seed(5)


In [52]: random.randint(7,10)

Out[52]: 9


In [53]: random.seed(5)


In [54]: random.randint(7,10)

Out[54]: 9

回答by Brahma

# Simple Python program to understand random.seed() importance

import random

random.seed(10)

for i in range(5):    
    print(random.randint(1, 100))

Execute the above program multiple times...

多次执行上述程序...

1st attempt: prints 5 random integers in the range of 1 - 100

第一次尝试:打印 1 - 100 范围内的 5 个随机整数

2nd attempt: prints same 5 random numbers appeared in the above execution.

第二次尝试:打印上述执行中出现的相同的 5 个随机数。

3rd attempt: same

第三次尝试:相同

.....So on

.....很快

Explanation: Every time we are running the above program we are setting seed to 10, then random generator takes this as a reference variable. And then by doing some predefined formula, it generates a random number.

解释:每次我们运行上面的程序时,我们都将种子设置为 10,然后随机生成器将其作为参考变量。然后通过执行一些预定义的公式,它会生成一个随机数。

Hence setting seed to 10 in the next execution again sets reference number to 10 and again the same behavior starts...

因此,在下一次执行中将种子设置为 10 再次将参考编号设置为 10,并且再次开始相同的行为......

As soon as we reset the seed value it gives the same plants.

一旦我们重置种子值,它就会给出相同的植物。

Note: Change the seed value and run the program, you'll see a different random sequence than the previous one.

注意:更改种子值并运行程序,您将看到与前一个不同的随机序列。

回答by Vicky Miao

Here is my understanding. Every time we set a seed value, a "label" or " reference" is generated. The next random.function call is attached to this "label", so next time you call the same seed value and random.function, it will give you the same result.

这是我的理解。每次我们设置种子值时,都会生成一个“标签”或“引用”。下一个 random.function 调用附加到这个“标签”,所以下次你调用相同的种子值和 random.function 时,它会给你相同的结果。

np.random.seed( 3 )
print(np.random.randn()) # output: 1.7886284734303186

np.random.seed( 3 )
print(np.random.rand()) # different function. output: 0.5507979025745755

np.random.seed( 5 )
print(np.random.rand()) # different seed value. output: 0.22199317108973948

回答by Gour Bera

Seed() can be used for later use ---

Example:
>>> import numpy as np
>>> np.random.seed(12)
>>> np.random.rand(4)
array([0.15416284, 0.7400497 , 0.26331502, 0.53373939])
>>>
>>>
>>> np.random.seed(10)
>>> np.random.rand(4)
array([0.77132064, 0.02075195, 0.63364823, 0.74880388])
>>>
>>>
>>> np.random.seed(12) # When you use same seed as before you will get same random output as before
>>> np.random.rand(4)
array([0.15416284, 0.7400497 , 0.26331502, 0.53373939])
>>>
>>>
>>> np.random.seed(10)
>>> np.random.rand(4)
array([0.77132064, 0.02075195, 0.63364823, 0.74880388])
>>>

回答by abhay Maurya

A random numberis generated by some operation on previous value.

随机数是通过在以前的值有些操作中产生。

If there is no previous value then the current time as previous value automatically. We can provide this previous value by own using random.seed(x)where xcould be any number or string etc.

如果没有以前的值,则当前时间自动作为以前的值。我们可以使用random.seed(x)wherex可以是任何数字或字符串等,通过自己提供这个先前的值。

Hence random.random()is not actually perfect random number, it could be predicted via random.seed(x).

因此random.random()实际上并不是完美的随机数,它可以通过random.seed(x).

import random 
random.seed(45)            #seed=45  
random.random()            #1st rand value=0.2718754143840908
0.2718754143840908  
random.random()            #2nd rand value=0.48802820785090784
0.48802820785090784  
random.seed(45)            # again reasign seed=45  
random.random()
0.2718754143840908         #matching with 1st rand value  
random.random()
0.48802820785090784        #matching with 2nd rand value

Hence, generating a random number is not actually random, because it runs on algorithms. Algorithms always give the same output based on the same input. This means, it depends on the value of the seed. So, in order to make it more random, time is automatically assigned to seed().

因此,生成随机数实际上并不是随机的,因为它运行在算法上。算法总是基于相同的输入给出相同的输出。这意味着,这取决于种子的价值。因此,为了使其更随机,时间会自动分配给seed()