scala 在火花数据帧左外连接后用 0 替换空值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/31799099/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Replacing null values with 0 after spark dataframe left outer join
提问by Mihir Shinde
I have two dataframes called leftand right.
我有两个名为left和right 的数据框。
scala> left.printSchema
root
|-- user_uid: double (nullable = true)
|-- labelVal: double (nullable = true)
|-- probability_score: double (nullable = true)
scala> right.printSchema
root
|-- user_uid: double (nullable = false)
|-- real_labelVal: double (nullable = false)
Then, I join them to get the joined Dataframe. It is a left outer join. Anyone interested in the natjoin function can find it here.
然后,我加入他们以获取加入的 Dataframe。它是一个左外连接。任何对 natjoin 功能感兴趣的人都可以在这里找到它。
scala> val joinedData = natjoin(predictionDataFrame, labeledObservedDataFrame, "left_outer")
scala> joinedData.printSchema
|-- user_uid: double (nullable = true)
|-- labelVal: double (nullable = true)
|-- probability_score: double (nullable = true)
|-- real_labelVal: double (nullable = false)
Since it is a left outer join, the real_labelVal column has nulls when user_uid is not present in right.
由于它是左外连接,因此当 user_uid 不存在于右侧时,real_labelVal 列具有空值。
scala> val realLabelVal = joinedData.select("real_labelval").distinct.collect
realLabelVal: Array[org.apache.spark.sql.Row] = Array([0.0], [null])
I want to replace the null values in the realLabelVal column with 1.0.
我想用 1.0 替换 realLabelVal 列中的空值。
Currently I do the following:
目前我执行以下操作:
- I find the index of real_labelval column and use the spark.sql.Row API to set the nulls to 1.0. (This gives me a RDD[Row])
- Then I apply the schema of the joined dataframe to get the cleaned dataframe.
- 我找到 real_labelval 列的索引并使用 spark.sql.Row API 将空值设置为 1.0。(这给了我一个 RDD[Row])
- 然后我应用加入的数据帧的模式来获取清理过的数据帧。
The code is as follows:
代码如下:
val real_labelval_index = 3
def replaceNull(row: Row) = {
val rowArray = row.toSeq.toArray
rowArray(real_labelval_index) = 1.0
Row.fromSeq(rowArray)
}
val cleanRowRDD = joinedData.map(row => if (row.isNullAt(real_labelval_index)) replaceNull(row) else row)
val cleanJoined = sqlContext.createDataFrame(cleanRowRdd, joinedData.schema)
Is there an elegant or efficient way to do this?
有没有一种优雅或有效的方法来做到这一点?
Goolging hasn't helped much. Thanks in advance.
谷歌搜索并没有太大帮助。提前致谢。
回答by Justin Pihony
Have you tried using na
你有没有试过使用 na
joinedData.na.fill(1.0, Seq("real_labelval"))

