Python Pandas:将嵌套字典转换为数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/31460234/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python Pandas: Convert nested dictionary to dataframe
提问by UserYmY
I have a dic like this:
我有一个这样的 dic:
{1 : {'tp': 26, 'fp': 112},
2 : {'tp': 26, 'fp': 91},
3 : {'tp': 23, 'fp': 74}}
and I would like to convert in into a dataframe like this:
我想转换成这样的数据帧:
t tp fp
1 26 112
2 26 91
3 23 74
Does anybody know how?
有人知道怎么做吗?
回答by Anand S Kumar
Try DataFrame.from_dict()and with keyword argument orientas 'index'-
尝试DataFrame.from_dict()使用关键字参数orient作为'index'-
Example -
例子 -
In [20]: d = {1 : {'tp': 26, 'fp': 112},
....: 2 : {'tp': 26, 'fp': 91},
....: 3 : {'tp': 23, 'fp': 74}}
In [24]: df =pd.DataFrame.from_dict(d,orient='index')
In [25]: df
Out[25]:
tp fp
1 26 112
2 26 91
3 23 74
If you also want to set the column name for indexcolumn , use - df.index.name, Example -
如果您还想为indexcolumn设置列名,请使用 - df.index.name,示例 -
In [30]: df.index.name = 't'
In [31]: df
Out[31]:
tp fp
t
1 26 112
2 26 91
3 23 74

