如何使用 Pandas DataFrame plot 函数为每个子图绘制 ylabel
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/31760509/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to plot a ylabel per subplot using pandas DataFrame plot function
提问by Jacques MALAPRADE
By default pandas.DataFrame.plot() using the subplots option doesn't seem to make it easy to plot a ylabel per subplot. I am trying to plot a pandas dataframe having a subplot per column in the dataframe. Code so far that doesn't work:
默认情况下,使用 subplots 选项的 pandas.DataFrame.plot() 似乎并不能轻松地为每个子图绘制 ylabel。我正在尝试绘制一个 Pandas 数据框,数据框中的每列都有一个子图。到目前为止不起作用的代码:
fig = plt.figure(figsize=(10,10))
ax = plt.gca()
df.plot(y=vars, ax=ax, subplots=True, layout=(3,1), sharex=True, legend=False,)
ax.set_ylabel = ['y','x', 'z']
But this doesn't plot any labels at all.
但这根本没有绘制任何标签。
回答by Jianxun Li
You can set y label on each ax separately.
您可以分别在每个轴上设置 y 标签。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# data
df = pd.DataFrame(np.random.randn(100,3), columns=list('ABC'))
# plot
axes = df.plot(figsize=(10, 10), subplots=True, sharex=True, legend=False)
axes[0].set_ylabel('yA')
axes[1].set_ylabel('yB')
axes[2].set_ylabel('yC')


