pandas 熊猫用 sum 对重复的索引求和

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/35403752/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:42:06  来源:igfitidea点击:

Pandas sum over duplicated indices with sum

pythonpandasindexingduplicates

提问by Pat

I have a data frame indexed by date

我有一个按日期索引的数据框

transactions_ind
Out[25]: 
                   Ticker     Transaction  Number_of_units      Price
Date                                                                 
2012-10-11  ROG VX Equity             Buy            12000  182.00000
2012-10-16  ROG VX Equity            Sell            -5000  184.70000
2012-11-16  ROG VX Equity            Sell            -5000  175.51580
2012-12-07  ROG VX Equity             Buy             5000  184.90000
2012-12-11  ROG VX Equity            Sell            -3000  188.50000
2012-12-11  ROG VX Equity  Reversal: Sell             3000  188.50000
2012-12-11  ROG VX Equity            Sell            -3000  188.50000
2012-12-11  ROG VX Equity  Reversal: Sell             3000  188.50000
2012-12-11  ROG VX Equity            Sell            -3000  188.50000
2012-12-20  ROG VX Equity            Sell            -5000  185.80000

I want to sum over the duplicated index values (2012-12-11) but only over the column "Number_of_units".

我想对重复的索引值 (2012-12-11) 求和,但只对“Number_of_units”列进行求和。

transactions_ind
Out[25]: 
                   Ticker     Transaction  Number_of_units      Price
Date                                                                 
2012-10-11  ROG VX Equity             Buy            12000  182.00000
2012-10-16  ROG VX Equity            Sell            -5000  184.70000
2012-11-16  ROG VX Equity            Sell            -5000  175.51580
2012-12-07  ROG VX Equity             Buy             5000  184.90000
2012-12-11  ROG VX Equity            Sell            -3000  188.50000
2012-12-20  ROG VX Equity            Sell            -5000  185.80000

Using

使用

transactions_ind.groupby(transactions_ind.index).sum()

deletes the columns "Ticker" and "Transaction" since those are filled with non-numeric values. Also I would olike to know how to deal with the different strings in the "Transactions" column when I sum over the "Number_of_units" column. Hope there exists a one-liner in pandas. Thanks for your help!

删除列“Ticker”和“Transaction”,因为它们填充了非数字值。另外,当我对“Number_of_units”列求和时,我想知道如何处理“Transactions”列中的不同字符串。希望Pandas中存在单线。谢谢你的帮助!

回答by jezrael

You can use aggwith firstand sum:

您可以aggfirst和一起使用sum

df = df.groupby(df.index).agg({'Ticker': 'first',
                                'Transaction': 'first',
                                'Number_of_units':sum, 
                                'Price': 'first'})
#reorder columns
df = df[['Ticker','Transaction','Number_of_units','Price']]
print df
                   Ticker Transaction  Number_of_units     Price
Date                                                            
2012-10-11  ROG VX Equity         Buy            12000  182.0000
2012-10-16  ROG VX Equity        Sell            -5000  184.7000
2012-11-16  ROG VX Equity        Sell            -5000  175.5158
2012-12-07  ROG VX Equity         Buy             5000  184.9000
2012-12-11  ROG VX Equity        Sell            -3000  188.5000
2012-12-20  ROG VX Equity        Sell            -5000  185.8000