Python 将多个空列添加到 Pandas DataFrame
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30926670/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Add multiple empty columns to pandas DataFrame
提问by Winterflags
This may be a stupid question, but how do I add multiple empty columns to a DataFrame from a list?
这可能是一个愚蠢的问题,但是如何从列表向 DataFrame 添加多个空列?
I can do:
我可以:
df["B"] = None
df["C"] = None
df["D"] = None
But I can't do:
但我不能这样做:
df[["B", "C", "D"]] = None
KeyError: "['B' 'C' 'D'] not in index"
采纳答案by EdChum
I'd concat
using a DataFrame:
我会concat
使用数据帧:
In [23]:
df = pd.DataFrame(columns=['A'])
df
Out[23]:
Empty DataFrame
Columns: [A]
Index: []
In [24]:
pd.concat([df,pd.DataFrame(columns=list('BCD'))])
Out[24]:
Empty DataFrame
Columns: [A, B, C, D]
Index: []
So by passing a list containing your original df, and a new one with the columns you wish to add, this will return a new df with the additional columns.
因此,通过传递一个包含原始 df 的列表和一个包含您希望添加的列的新列表,这将返回一个带有附加列的新 df。
Caveat: See the discussion of performance in the other answersand/or the comment discussions. reindex
may be preferable where performance is critical.
警告:请参阅其他答案和/或评论讨论中的性能讨论。reindex
在性能至关重要的情况下可能更可取。
回答by unutbu
You could use df.reindex
to add new columns:
您可以使用df.reindex
添加新列:
In [18]: df = pd.DataFrame(np.random.randint(10, size=(5,1)), columns=['A'])
In [19]: df
Out[19]:
A
0 4
1 7
2 0
3 7
4 6
In [20]: df.reindex(columns=list('ABCD'))
Out[20]:
A B C D
0 4 NaN NaN NaN
1 7 NaN NaN NaN
2 0 NaN NaN NaN
3 7 NaN NaN NaN
4 6 NaN NaN NaN
reindex
will return a new DataFrame, with columns appearing in the order they are listed:
reindex
将返回一个新的 DataFrame,列按它们列出的顺序出现:
In [31]: df.reindex(columns=list('DCBA'))
Out[31]:
D C B A
0 NaN NaN NaN 4
1 NaN NaN NaN 7
2 NaN NaN NaN 0
3 NaN NaN NaN 7
4 NaN NaN NaN 6
The reindex
method as a fill_value
parameter as well:
该reindex
方法也作为fill_value
参数:
In [22]: df.reindex(columns=list('ABCD'), fill_value=0)
Out[22]:
A B C D
0 4 0 0 0
1 7 0 0 0
2 0 0 0 0
3 7 0 0 0
4 6 0 0 0
回答by toto_tico
If you don't want to rewrite the name of the old columns, then you can use reindex:
如果不想重写旧列的名称,则可以使用 reindex:
df.reindex(columns=[*df.columns.tolist(), 'new_column1', 'new_column2'], fill_value=0)
Full example:
完整示例:
In [1]: df = pd.DataFrame(np.random.randint(10, size=(3,1)), columns=['A'])
In [1]: df
Out[1]:
A
0 4
1 7
2 0
In [2]: df.reindex(columns=[*df.columns.tolist(), 'col1', 'col2'], fill_value=0)
Out[2]:
A col1 col2
0 1 0 0
1 2 0 0
And, if you already have a listwith the column names, :
而且,如果您已经有一个包含列名的列表,则:
In [3]: my_cols_list=['col1','col2']
In [4]: df.reindex(columns=[*df.columns.tolist(), *my_cols_list], fill_value=0)
Out[4]:
A col1 col2
0 1 0 0
1 2 0 0
回答by alexprice
Why not just use loop:
为什么不直接使用循环:
for newcol in ['B','C','D']:
df[newcol]=0
回答by Oleg O
Just to add to the list of funny ways:
只是添加到有趣的方式列表中:
columns_add = ['a', 'b', 'c']
df = df.assign(**dict(zip(columns_add, [0] * len(columns_add)))