在多索引 Pandas DataFrame 上选择一列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20570626/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:26:40  来源:igfitidea点击:

Selecting a column on a multi-index pandas DataFrame

pythonmatplotlibpandasmulti-index

提问by erantdo

Given this DataFrame:

鉴于此数据帧:

from pandas import DataFrame
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo'], ['one', 'two', 'one', 'two',        'one', 'two']]

tuples = zip(*arrays)

index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

df = DataFrame(randn(3, 6), index=[1, 2, 3], columns=index)

How can I plot a chart with: X-axis: 1,2,3. The three series names are: bar, baz, foo. Y-axis values: 'one' column. The label next to each dot is the 'two' column.

如何绘制图表:X 轴:1,2,3。三个系列的名称是:bar、baz、foo。Y 轴值:“一”列。每个点旁边的标签是“二”列。

So, in other words, say I have three stocks (bar, baz, & foo), with each of them having its respective stock price ('one') for each date (1,2,3), and the comment for each dot is at the 'two' column. How can I chart that?

因此,换句话说,假设我有三只股票(bar、baz 和 foo),每只股票在每个日期(1、2、3)都有各自的股票价格(“一个”),以及每个日期的评论点位于“二”列。我怎样才能绘制它?

(Sorry for not showing the df table, I don't know how to copy it correctly)

(抱歉没有显示df表,我不知道如何正确复制)

回答by alko

Start with dataframe of form

从表单的数据框开始

>>> df
first        bar                 baz                 foo
second       one       two       one       two       one       two
1       0.085930 -0.848468  0.911572 -0.705026 -1.284458 -0.602760
2       0.385054  2.539314  0.589164  0.765126  0.210199 -0.481789
3      -0.352475 -0.975200 -0.403591  0.975707  0.533924 -0.195430

Select and plot 'one'column

选择并绘制'one'

>>> one = df.xs('one', level=1, axis=1)
>>> one
first       bar       baz       foo
1      0.085930  0.911572 -1.284458
2      0.385054  0.589164  0.210199
3     -0.352475 -0.403591  0.533924    

>>> pyplot.show(one.plot())

enter image description here

在此处输入图片说明