Python 如果满足条件,则替换 Numpy 元素

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/19766757/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 14:33:04  来源:igfitidea点击:

Replacing Numpy elements if condition is met

pythonarraysnumpyconditional

提问by ChrisFro

I have a large numpy array that I need to manipulate so that each element is changed to either a 1 or 0 if a condition is met (will be used as a pixel mask later). There are about 8 million elements in the array and my current method takes too long for the reduction pipeline:

我有一个大型 numpy 数组,我需要对其进行操作,以便在满足条件时将每个元素更改为 1 或 0(稍后将用作像素掩码)。数组中大约有 800 万个元素,我当前的方法对于减少管道来说花费的时间太长:

for (y,x), value in numpy.ndenumerate(mask_data): 

    if mask_data[y,x]<3: #Good Pixel
        mask_data[y,x]=1
    elif mask_data[y,x]>3: #Bad Pixel
        mask_data[y,x]=0

Is there a numpy function that would speed this up?

是否有一个 numpy 函数可以加快速度?

采纳答案by Steve Barnes

>>> import numpy as np
>>> a = np.random.randint(0, 5, size=(5, 4))
>>> a
array([[4, 2, 1, 1],
       [3, 0, 1, 2],
       [2, 0, 1, 1],
       [4, 0, 2, 3],
       [0, 0, 0, 2]])
>>> b = a < 3
>>> b
array([[False,  True,  True,  True],
       [False,  True,  True,  True],
       [ True,  True,  True,  True],
       [False,  True,  True, False],
       [ True,  True,  True,  True]], dtype=bool)
>>> 
>>> c = b.astype(int)
>>> c
array([[0, 1, 1, 1],
       [0, 1, 1, 1],
       [1, 1, 1, 1],
       [0, 1, 1, 0],
       [1, 1, 1, 1]])

You can shorten this with:

您可以通过以下方式缩短它:

>>> c = (a < 3).astype(int)

回答by ev-br

>>> a = np.random.randint(0, 5, size=(5, 4))
>>> a
array([[0, 3, 3, 2],
       [4, 1, 1, 2],
       [3, 4, 2, 4],
       [2, 4, 3, 0],
       [1, 2, 3, 4]])
>>> 
>>> a[a > 3] = -101
>>> a
array([[   0,    3,    3,    2],
       [-101,    1,    1,    2],
       [   3, -101,    2, -101],
       [   2, -101,    3,    0],
       [   1,    2,    3, -101]])
>>>

See, eg, Indexing with boolean arrays.

参见,例如,使用布尔数组索引

回答by YXD

You can create your mask array in one step like this

您可以像这样一步创建您的掩码阵列

mask_data = input_mask_data < 3

This creates a boolean array which can then be used as a pixel mask. Note that we haven't changed the input array (as in your code) but have created a new array to hold the mask data - I would recommend doing it this way.

这将创建一个布尔数组,然后可以将其用作像素掩码。请注意,我们没有更改输入数组(如您的代码中所示),而是创建了一个新数组来保存掩码数据 - 我建议这样做。

>>> input_mask_data = np.random.randint(0, 5, (3, 4))
>>> input_mask_data
array([[1, 3, 4, 0],
       [4, 1, 2, 2],
       [1, 2, 3, 0]])
>>> mask_data = input_mask_data < 3
>>> mask_data
array([[ True, False, False,  True],
       [False,  True,  True,  True],
       [ True,  True, False,  True]], dtype=bool)
>>> 

回答by mamalos

I am not sure I understood your question, but if you write:

我不确定我是否理解你的问题,但如果你写:

mask_data[:3, :3] = 1
mask_data[3:, 3:] = 0

This will make all values of mask data whose x and y indexes are less than 3 to be equal to 1 and all rest to be equal to 0

这将使 x 和 y 索引小于 3 的掩码数据的所有值都等于 1,其余的都等于 0

回答by Markus Dutschke

The quickest (and most flexible) wayis to use np.where, which chooses between two arrays according to a mask(array of true and false values):

最快(和最灵活的)的方式是使用np.where,它根据一个掩模(真假值的阵列)两个阵列之间选:

import numpy as np
a = np.random.randint(0, 5, size=(5, 4))
b = np.where(a<3,0,1)
print('a:',a)
print()
print('b:',b)

which will produce:

这将产生:

a: [[1 4 0 1]
 [1 3 2 4]
 [1 0 2 1]
 [3 1 0 0]
 [1 4 0 1]]

b: [[0 1 0 0]
 [0 1 0 1]
 [0 0 0 0]
 [1 0 0 0]
 [0 1 0 0]]