pandas 如何在熊猫中将日期列拆分为单独的日、月、年列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/55776571/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 06:22:55  来源:igfitidea点击:

How to split a date column into separate day , month ,year column in pandas

pythonpandasdatetimedataframemultiple-columns

提问by Ratnesh

I have dataset, df.head(4):

我有数据集,df.head(4)

               Dewptm   Fog  Humidity   Pressurem     Tempm      Wspdm  Rainfall
datetime_utc                            
1996-11-01    11.666667 0.0  52.916667  -2659.666667  22.333333  2.466667   0
1996-11-02    10.458333 0.0  48.625000  1009.833333   22.916667  8.028571   0
1996-11-03    12.041667 0.0  55.958333  1010.500000   21.791667  4.804545   0
1996-11-04    10.222222 0.0  48.055556  1011.333333   22.722222  1.964706   0

Here is df.columns:

这是df.columns

Index(['Dewptm', 'Fog', 'Humidity', 'Pressurem', 'Rain', 'Tempm', 'Wspdm',
       'Rainfall'],
      dtype='object')

How could I split datetime_utccolumn into the year, month and day column?

如何将datetime_utc列拆分为年、月和日列?

I tried:

我试过:

df["day"] = df['datetime_utc'].map(lambda x: x.day)
df["month"] = df['datetime_utc'].map(lambda x: x.month)
df["year"] = df['datetime_utc'].map(lambda x: x.year)

Error:

错误:

KeyError: 'datetime_utc'

KeyError: 'datetime_utc'

Also

pd.concat([df.drop('datetime_utc', axis = 1), 
          (df.datetime_utc.str.split("-).str[:3].apply(pd.Series)
          .rename(columns={0:'year', 1:'month', 2:'day'}))], axis = 1)

I am getting error:

我收到错误:

KeyError: "['datetime_utc'] not found in axis" The problem I am facing is the column datetime_utcis the default index column in my dataset, Please suggest me an approach.

KeyError: "['datetime_utc'] not found in axis" 我面临的问题是该列datetime_utc是我数据集中的默认索引列,请建议我一种方法。

回答by Erfan

The problem is that datetime_utcis in your index instead a column, so you have to access your index to be able to make your new columns:

问题是datetime_utc在您的索引中而不是一列,因此您必须访问索引才能创建新列:

df['day'] = df.index.day
df['month'] = df.index.month
df['year'] = df.index.year

print(df)
                 Dewptm  Fog   Humidity    Pressurem      Tempm     Wspdm  \
datetime_utc                                                                
1996-11-01    11.666667  0.0  52.916667 -2659.666667  22.333333  2.466667   
1996-11-02    10.458333  0.0  48.625000  1009.833333  22.916667  8.028571   
1996-11-03    12.041667  0.0  55.958333  1010.500000  21.791667  4.804545   
1996-11-04    10.222222  0.0  48.055556  1011.333333  22.722222  1.964706   

              Rainfall  day  month  year  
datetime_utc                              
1996-11-01           0    1     11  1996  
1996-11-02           0    2     11  1996  
1996-11-03           0    3     11  1996  
1996-11-04           0    4     11  1996  

If you want datetime_utcas a column you have to reset your index and then you can access the datetime methods with dt.month, dt.yearand dt.daylike following:

如果你想datetime_utc为一列,你必须重置索引,然后您可以访问的日期时间的方法dt.monthdt.year以及dt.day类似以下内容:

# Reset our index so datetime_utc becomes a column
df.reset_index(inplace=True)

# Create new columns
df['day'] = df['datetime_utc'].dt.day
df['month'] = df['datetime_utc'].dt.month
df['year'] = df['datetime_utc'].dt.year

print(df)
  datetime_utc     Dewptm  Fog   Humidity    Pressurem      Tempm     Wspdm  \
0   1996-11-01  11.666667  0.0  52.916667 -2659.666667  22.333333  2.466667   
1   1996-11-02  10.458333  0.0  48.625000  1009.833333  22.916667  8.028571   
2   1996-11-03  12.041667  0.0  55.958333  1010.500000  21.791667  4.804545   
3   1996-11-04  10.222222  0.0  48.055556  1011.333333  22.722222  1.964706   

   Rainfall  day  month  year  
0         0    1     11  1996  
1         0    2     11  1996  
2         0    3     11  1996  
3         0    4     11  1996  

Noteif you index is not in datetimetype yet, use the following before you try to extract year, month and day:

请注意,如果您的索引datetime尚未键入,请在尝试提取年、月和日之前使用以下内容:

df.index = pd.to_datetime(df.index)