pandas AttributeError: 'list' 对象没有属性 'dtype'
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/35203484/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
AttributeError: 'list' object has no attribute 'dtype'
提问by serenade
I have trouble with Bollinger Band algorithm. I want to apply this algorithm to my time series data.
我在使用布林带算法时遇到了麻烦。我想将此算法应用于我的时间序列数据。
The code:
编码:
length = 1440
dataframe = pd.DataFrame(speed)
ave = pd.stats.moments.rolling_mean(speed,length)
sd = pd.stats.moments.rolling_std(speed,length=1440)
upband = ave + (sd*2)
dnband = ave - (sd*2)
print np.round(ave,3), np.round(upband,3), np.round(dnband,3)
Input:
输入:
speed=[96.5, 97.0, 93.75, 96.0, 94.5, 95.0, 94.75, 96.0, 96.5, 97.0, 94.75, 97.5, 94.5, 96.0, 92.75, 96.5, 91.5, 97.75, 93.0, 96.5, 92.25, 95.5, 92.5, 95.5, 94.0, 96.5, 94.25, 97.75, 93.0]
Result of "ave" variable:
“ave”变量的结果:
[1440 rows x 1 columns] 0 0 NaN 1 NaN 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 NaN 9 NaN 10 NaN 11 NaN 12 NaN 13 NaN 14 NaN 15 NaN 16 NaN 17 NaN
[1440 行 x 1 列] 0 0 NaN 1 NaN 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 NaN 9 NaN 10 NaN 11 NaN 12 NaN 13 NaN 14 NaN 15 NaN 16 NaN 17 NaN
回答by Stefan Reinhardt
The first point is, as i allready mentioned in the comment rolling_mean needs a DataFrame you can achieve this by inserting the line
第一点是,正如我在评论中提到的rolling_mean需要一个DataFrame,你可以通过插入行来实现
speed = pd.DataFrame(data=speed)
before the ave = ...
line.
Nonetheless you also missed to define the window attribute in rolling_std
(See: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.rolling_std.html)
ave = ...
行前。尽管如此,您还是错过了在 rolling_std 中定义 window 属性(参见:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.rolling_std.html )