euclid 的扩展算法 C++

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/12826114/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-27 16:39:44  来源:igfitidea点击:

euclid's extended algorithm C ++

c++algorithm

提问by user1735851

I'm having an issue with Euclid's Extended Algorithm. (ax+by=gcd(a,b)) I'm trying to determine both the GCD and x and y. The GCD isn't a problem but using the loop method something is going wrong with x and y. Normally one number comes up as 0 and the other is an abnormally large negative number. Code follows:

我对 Euclid 的扩展算法有疑问。(ax+by=gcd(a,b)) 我试图确定 GCD 和 x 和 y。GCD 不是问题,但使用循环方法 x 和 y 出现问题。通常,一个数字是 0,另一个是异常大的负数。代码如下:

#include <iostream>

using namespace std;

main ()
{
    int a,b,q,x,lastx,y,lasty,temp,temp1,temp2,temp3;
    cout << "Please input a" << endl;
    cin >> a; 
    cout << "Please input b" << endl;
    cin >> b;
    if (b>a) {//we switch them
        temp=a; a=b; b=temp;
    }
    //begin function
    x=0;
    y=1;
    lastx=1;
    lasty=0;
    while (b!=0) {
        q= a/b;
        temp1= a%b;
        a=b;
        b=temp1;

        temp2=x-q*x;
        x=lastx-q*x;
        lastx=temp2;

        temp3=y-q*y;
        y=lasty-q*y;
        lasty=temp3;
    }

    cout << "gcd" << a << endl;
    cout << "x=" << lastx << endl;
    cout << "y=" << lasty << endl;
    return 0;
}

采纳答案by GWW

Two of your assignments are wrong they should be:

你的两个任务是错误的,它们应该是:

    temp2 = x;
    x=lastx-q*x;
    lastx = temp2;

    temp3 = y;
    y = lasty-q*y;
    lasty=temp3;

Example output with the above fixes:

具有上述修复的示例输出:

Please input a
54
Please input b
24
gcd6
x=1
y=-2

回答by maruf

Although the question has been asked a long time ago, but the answer will help someone who were finding C++ implementation of extended euclidean algorithm.

虽然这个问题很久以前就有人问过了,但答案将帮助那些正在寻找扩展欧几里得算法的 C++ 实现的人。

Here is a recursive C++ implementation:

这是一个递归的 C++ 实现:

int xGCD(int a, int b, int &x, int &y) {
    if(b == 0) {
       x = 1;
       y = 0;
       return a;
    }

    int x1, y1, gcd = xGCD(b, a % b, x1, y1);
    x = y1;
    y = x1 - (a / b) * y1;
    return gcd;
}

Example with code:

代码示例:

#include <iostream>

int main()
{
   int a = 99, b = 78, x, y, gcd;

   if(a < b) std::swap(a, b);

   gcd = xGCD(a, b, x, y);
   std::cout << "GCD: " << gcd << ", x = " << x << ", y = " << y << std::endl;

   return 0;
}

Input:

输入:

a = 99, b =78

a = 99, b = 78

Output:

输出:

GCD: 3, x = -11, y = 14

GCD:3,x = -11,y = 14