Python Pandas/Pyplot 中的散点图:如何按类别绘制
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/21654635/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Scatter plots in Pandas/Pyplot: How to plot by category
提问by user2989613
I am trying to make a simple scatter plot in pyplot using a Pandas DataFrame object, but want an efficient way of plotting two variables but have the symbols dictated by a third column (key). I have tried various ways using df.groupby, but not successfully. A sample df script is below. This colours the markers according to 'key1', but Id like to see a legend with 'key1' categories. Am I close? Thanks.
我正在尝试使用 Pandas DataFrame 对象在 pyplot 中制作一个简单的散点图,但想要一种绘制两个变量的有效方法,但符号由第三列(键)指示。我尝试了各种使用 df.groupby 的方法,但都没有成功。下面是一个示例 df 脚本。这会根据“key1”为标记着色,但我希望看到带有“key1”类别的图例。我很亲近吗?谢谢。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
ax1.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
plt.show()
采纳答案by Joe Kington
You can use scatterfor this, but that requires having numerical values for your key1, and you won't have a legend, as you noticed.
您可以scatter为此使用它,但这需要您的 具有数值key1,并且正如您所注意到的那样,您不会有图例。
It's better to just use plotfor discrete categories like this. For example:
最好只plot用于这样的离散类别。例如:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
groups = df.groupby('label')
# Plot
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for name, group in groups:
ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend()
plt.show()


If you'd like things to look like the default pandasstyle, then just update the rcParamswith the pandas stylesheet and use its color generator. (I'm also tweaking the legend slightly):
如果您希望事情看起来像默认pandas样式,那么只需rcParams使用 pandas 样式表更新并使用其颜色生成器。(我也在稍微调整图例):
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
groups = df.groupby('label')
# Plot
plt.rcParams.update(pd.tools.plotting.mpl_stylesheet)
colors = pd.tools.plotting._get_standard_colors(len(groups), color_type='random')
fig, ax = plt.subplots()
ax.set_color_cycle(colors)
ax.margins(0.05)
for name, group in groups:
ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend(numpoints=1, loc='upper left')
plt.show()


回答by CT Zhu
With plt.scatter, I can only think of one: to use a proxy artist:
有了plt.scatter,我只能想到一个:使用代理艺术家:
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
x=ax1.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
ccm=x.get_cmap()
circles=[Line2D(range(1), range(1), color='w', marker='o', markersize=10, markerfacecolor=item) for item in ccm((array([4,6,8])-4.0)/4)]
leg = plt.legend(circles, ['4','6','8'], loc = "center left", bbox_to_anchor = (1, 0.5), numpoints = 1)
And the result is:
结果是:


回答by Bob Baxley
This is simple to do with Seaborn(pip install seaborn) as a oneliner
这很简单,用Seaborn( pip install seaborn) 作为单线
sns.pairplot(x_vars=["one"], y_vars=["two"], data=df, hue="key1", size=5):
sns.pairplot(x_vars=["one"], y_vars=["two"], data=df, hue="key1", size=5):
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(1974)
df = pd.DataFrame(
np.random.normal(10, 1, 30).reshape(10, 3),
index=pd.date_range('2010-01-01', freq='M', periods=10),
columns=('one', 'two', 'three'))
df['key1'] = (4, 4, 4, 6, 6, 6, 8, 8, 8, 8)
sns.pairplot(x_vars=["one"], y_vars=["two"], data=df, hue="key1", size=5)
Here is the dataframe for reference:
这是供参考的数据框:
Since you have three variable columns in your data, you may want to plot all pairwise dimensions with:
由于您的数据中有三个变量列,您可能希望绘制所有成对维度:
sns.pairplot(vars=["one","two","three"], data=df, hue="key1", size=5)
https://rasbt.github.io/mlxtend/user_guide/plotting/category_scatter/is another option.
https://rasbt.github.io/mlxtend/user_guide/plotting/category_scatter/是另一种选择。
回答by Nipun Batra
You can also try Altairor ggpotwhich are focused on declarative visualisations.
import numpy as np
import pandas as pd
np.random.seed(1974)
# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))
Altair code
Altair 代码
from altair import Chart
c = Chart(df)
c.mark_circle().encode(x='x', y='y', color='label')
ggplot code
ggplot代码
from ggplot import *
ggplot(aes(x='x', y='y', color='label'), data=df) +\
geom_point(size=50) +\
theme_bw()
回答by Arjaan Buijk
You can use df.plot.scatter, and pass an array to c= argument defining the color of each point:
您可以使用 df.plot.scatter,并将数组传递给 c= 参数定义每个点的颜色:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
colors = np.where(df["key1"]==4,'r','-')
colors[df["key1"]==6] = 'g'
colors[df["key1"]==8] = 'b'
print(colors)
df.plot.scatter(x="one",y="two",c=colors)
plt.show()
回答by fuglede
It's rather hacky, but you could use one1as a Float64Indexto do everything in one go:
它相当笨拙,但您可以将其one1用作Float64Index一次性完成所有事情:
df.set_index('one').sort_index().groupby('key1')['two'].plot(style='--o', legend=True)
Note that as of 0.20.3, sorting the index is necessary, and the legend is a bit wonky.
回答by ImportanceOfBeingErnest
From matplotlib 3.1 onwards you can use .legend_elements(). An example is shown in Automated legend creation. The advantage is that a single scatter call can be used.
从 matplotlib 3.1 开始,您可以使用.legend_elements(). 自动图例创建中显示了一个示例。优点是可以使用单个分散调用。
In this case:
在这种情况下:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3),
index = pd.date_range('2010-01-01', freq = 'M', periods = 10),
columns = ('one', 'two', 'three'))
df['key1'] = (4,4,4,6,6,6,8,8,8,8)
fig, ax = plt.subplots()
sc = ax.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8)
ax.legend(*sc.legend_elements())
plt.show()
In case the keys were not directly given as numbers, it would look as
如果键不是直接作为数字给出的,它看起来像
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3),
index = pd.date_range('2010-01-01', freq = 'M', periods = 10),
columns = ('one', 'two', 'three'))
df['key1'] = list("AAABBBCCCC")
labels, index = np.unique(df["key1"], return_inverse=True)
fig, ax = plt.subplots()
sc = ax.scatter(df['one'], df['two'], marker = 'o', c = index, alpha = 0.8)
ax.legend(sc.legend_elements()[0], labels)
plt.show()

