Python 熊猫数据框中的分组加权平均值和总和
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/31521027/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
groupby weighted average and sum in pandas dataframe
提问by samsri
I have a dataframe ,
我有一个数据框,
Out[78]:
contract month year buys adjusted_lots price
0 W Z 5 Sell -5 554.85
1 C Z 5 Sell -3 424.50
2 C Z 5 Sell -2 424.00
3 C Z 5 Sell -2 423.75
4 C Z 5 Sell -3 423.50
5 C Z 5 Sell -2 425.50
6 C Z 5 Sell -3 425.25
7 C Z 5 Sell -2 426.00
8 C Z 5 Sell -2 426.75
9 CC U 5 Buy 5 3328.00
10 SB V 5 Buy 5 11.65
11 SB V 5 Buy 5 11.64
12 SB V 5 Buy 2 11.60
I need a sum of adjusted_lots , price which is weighted average , of price and ajusted_lots , grouped by all the other columns , ie. grouped by (contract, month , year and buys)
我需要一个adjusted_lots 的总和, price 是加权平均值, price 和 ajusted_lots ,按所有其他列分组,即。按(合同、月、年和购买)分组
Similiar solution on R was achieved by following code, using dplyr, however unable to do the same in pandas.
R 上的类似解决方案是通过以下代码实现的,使用 dplyr,但无法在 Pandas 中执行相同操作。
> newdf = df %>%
select ( contract , month , year , buys , adjusted_lots , price ) %>%
group_by( contract , month , year , buys) %>%
summarise(qty = sum( adjusted_lots) , avgpx = weighted.mean(x = price , w = adjusted_lots) , comdty = "Comdty" )
> newdf
Source: local data frame [4 x 6]
contract month year comdty qty avgpx
1 C Z 5 Comdty -19 424.8289
2 CC U 5 Comdty 5 3328.0000
3 SB V 5 Comdty 12 11.6375
4 W Z 5 Comdty -5 554.8500
is the same possible by groupby or any other solution ?
groupby 或任何其他解决方案是否可能相同?
采纳答案by jrjc
EDIT:update aggregation so it works with recent version of pandas
编辑:更新聚合,使其适用于最新版本的熊猫
To pass multiple functions to a groupby object, you need to pass a tuples with the aggregation functions and the column to which the function applies:
要将多个函数传递给 groupby 对象,您需要传递一个包含聚合函数和该函数适用的列的元组:
# Define a lambda function to compute the weighted mean:
wm = lambda x: np.average(x, weights=df.loc[x.index, "adjusted_lots"])
# Define a dictionary with the functions to apply for a given column:
# the following is deprecated since pandas 0.20:
# f = {'adjusted_lots': ['sum'], 'price': {'weighted_mean' : wm} }
# df.groupby(["contract", "month", "year", "buys"]).agg(f)
# Groupby and [aggregate with namedAgg][1]:
df.groupby(["contract", "month", "year", "buys"]).agg(adjusted_lots=("adjusted_lots", "sum"),
price_weighted_mean=("price", wm))
adjusted_lots price_weighted_mean
contract month year buys
C Z 5 Sell -19 424.828947
CC U 5 Buy 5 3328.000000
SB V 5 Buy 12 11.637500
W Z 5 Sell -5 554.850000
You can see more here:
你可以在这里看到更多:
and in a similar question here:
在一个类似的问题中:
Hope this helps
希望这可以帮助
回答by ErnestScribbler
Doing weighted average by groupby(...).apply(...) can be very slow (100x from the following). See my answer (and others) on this thread.
按 groupby(...).apply(...) 进行加权平均可能会非常慢(以下是 100 倍)。在此线程上查看我的回答(和其他人)。
def weighted_average(df,data_col,weight_col,by_col):
df['_data_times_weight'] = df[data_col]*df[weight_col]
df['_weight_where_notnull'] = df[weight_col]*pd.notnull(df[data_col])
g = df.groupby(by_col)
result = g['_data_times_weight'].sum() / g['_weight_where_notnull'].sum()
del df['_data_times_weight'], df['_weight_where_notnull']
return result
回答by Mark Greenwood
The solution that uses a dict of aggregation functions will be deprecated in a future version of pandas (version 0.22):
使用聚合函数字典的解决方案将在熊猫的未来版本(0.22 版)中被弃用:
FutureWarning: using a dict with renaming is deprecated and will be removed in a future
version return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)
Use a groupby apply and return a Series to rename columns as discussed in: Rename result columns from Pandas aggregation ("FutureWarning: using a dict with renaming is deprecated")
使用 groupby 应用并返回一个系列来重命名列,如: 重命名 Pandas 聚合中的结果列(“FutureWarning:不推荐使用重命名的字典”)
def my_agg(x):
names = {'weighted_ave_price': (x['adjusted_lots'] * x['price']).sum()/x['adjusted_lots'].sum()}
return pd.Series(names, index=['weighted_ave_price'])
produces the same result:
产生相同的结果:
>df.groupby(["contract", "month", "year", "buys"]).apply(my_agg)
weighted_ave_price
contract month year buys
C Z 5 Sell 424.828947
CC U 5 Buy 3328.000000
SB V 5 Buy 11.637500
W Z 5 Sell 554.850000