Python 基于列合并 Pandas 中数据帧的行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/23919563/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 03:41:36  来源:igfitidea点击:

Merge rows of a dataframe in pandas based on a column

pythonpandas

提问by user3527975

I am new to pandas. I have a dataframe that looks like this

我是熊猫的新手。我有一个看起来像这样的数据框

sitename            name        date               count
0  chess.com  Autobiographer  2012-05-01               2
1  chess.com  Autobiographer  2012-05-05               1
2  chess.com  Autobiographer  2012-05-15               1
3  chess.com  Autobiographer  2012-05-01               1
4  chess.com  Autobiographer  2012-05-15               1
5  chess.com  Autobiographer  2012-05-01               1

How to merge the rows based on date and sum up the count for the same date. Like in sql

如何根据日期合并行并总结同一日期的计数。就像在 sql 中一样

select sitename, name, date count(*) from table group by date

采纳答案by TimmyCarbone

If you want to keep your sitename and name in your dataframe, you can do :

如果要在数据框中保留站点名称和名称,可以执行以下操作:

df = dataframe.groupby(['date', 'sitename', 'name']).sum()

EDIT : See @DSM's comment to reset the indexes and have a non indexed dataframe.

编辑:请参阅@DSM的评论以重置索引并具有非索引数据框。

回答by 8one6

df = dataframe.groupby('date').sum()