python pandas,某些列到行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/19842066/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:18:59  来源:igfitidea点击:

python pandas, certain columns to rows

pythonpandas

提问by Dimitris

I have a pandas dataframe, with 4 rows and 4 columns - here is asimple version:

我有一个 Pandas 数据框,有 4 行和 4 列 - 这是一个简单的版本:

import pandas as pd
import numpy as np
rows = np.arange(1, 4, 1)
values = np.arange(1, 17).reshape(4,4)
df = pd.DataFrame(values, index=rows, columns=['A', 'B', 'C', 'D'])

what I am trying to do is to convert this to a 2 * 8 dataframe, with B, C and D alligng for each array - so it would look like this:

我想要做的是将其转换为 2 * 8 数据帧,每个数组的 B、C 和 D 对齐 - 所以它看起来像这样:

1  2 
1  3
1  4
5  6
5  7
5  8
9  10
9  11
9  12
13 14
13 15
13 16

reading on pandas documentation I tried this:

阅读Pandas文档我试过这个:

df1 = pd.pivot_table(df, rows = ['B', 'C', 'D'], cols = 'A')

but gives me an error that I cannot identify the source (ends with

但给了我一个错误,我无法确定来源(以

DataError: No numeric types to aggregate

DataError:没有要聚合的数字类型

)

)

following that I want to split the dataframe based on A values, but I think the .groupby command is probably going to take care of it

接下来我想根据 A 值拆分数据帧,但我认为 .groupby 命令可能会处理它

回答by Acorbe

What you are looking for is the meltfunction

您正在寻找的是melt功能

 pd.melt(df,id_vars=['A']) 

     A variable  value
0    1        B      2
1    5        B      6
2    9        B     10
3   13        B     14
4    1        C      3
5    5        C      7
6    9        C     11
7   13        C     15
8    1        D      4
9    5        D      8
10   9        D     12
11  13        D     16

? ??

? ??

A final sorting according to Ais then necessary

最后的排序根据A然后是必要的

 pd.melt(df,id_vars=['A']).sort('A')  

      A variable  value
 0    1        B      2
 4    1        C      3
 8    1        D      4
 1    5        B      6
 5    5        C      7
 9    5        D      8
 2    9        B     10
 6    9        C     11
 10   9        D     12
 3   13        B     14
 7   13        C     15
 11  13        D     16

Note: pd.DataFrame.sorthas been deprecatedin favour of pd.DataFrame.sort_values.

注意pd.DataFrame.sort已被弃用而支持pd.DataFrame.sort_values.