将 python pandas 中的一列从 STRING MONTH 转换为 INT
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42684530/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
convert a column in a python pandas from STRING MONTH into INT
提问by Chubaka
In Python 2.7.11 & Pandas 0.18.1:
在 Python 2.7.11 和 Pandas 0.18.1 中:
If we have the following csv file:
如果我们有以下 csv 文件:
YEAR,MONTH,ID
2011,JAN,1
2011,FEB,1
2011,MAR,1
Is there any way to read it as a Pandas data frame and convert the MONTH column into strings like this?
有什么方法可以将其作为 Pandas 数据框读取并将 MONTH 列转换为这样的字符串?
YEAR,MONTH,ID
2011,1,1
2011,2,1
2011,3,1
Some pandas functions such as "dt.strftime('%b')" doesn't seem to work. Could someone enlighten?
一些 Pandas 函数,例如“dt.strftime('%b')”似乎不起作用。有人能指教吗?
回答by MaxU
I guess the easiest and one of the fastest method would be to create a mapping dict and map like as follows:
我想最简单也是最快的方法之一是创建一个映射字典和映射,如下所示:
In [2]: df
Out[2]:
YEAR MONTH ID
0 2011 JAN 1
1 2011 FEB 1
2 2011 MAR 1
In [3]: d = {'JAN':1, 'FEB':2, 'MAR':3, 'APR':4, }
In [4]: df.MONTH = df.MONTH.map(d)
In [5]: df
Out[5]:
YEAR MONTH ID
0 2011 1 1
1 2011 2 1
2 2011 3 1
you may want to use df.MONTH = df.MONTH.str.upper().map(d)
if not all MONTH
values are in upper case
df.MONTH = df.MONTH.str.upper().map(d)
如果不是所有MONTH
值都大写,您可能想要使用
another more slower but more robust method:
另一种更慢但更健壮的方法:
In [11]: pd.to_datetime(df.MONTH, format='%b').dt.month
Out[11]:
0 1
1 2
2 3
Name: MONTH, dtype: int64
UPDATE:we can create a mapping automatically (thanks to @Quetzalcoatl)
更新:我们可以自动创建映射(感谢@Quetzalcoatl)
import calendar
d = dict((v,k) for k,v in enumerate(calendar.month_abbr))
or alternatively (using only Pandas):
或者(仅使用 Pandas):
d = dict(zip(range(1,13), pd.date_range('2000-01-01', freq='M', periods=12).strftime('%b')))