Pandas:加入带有条件的数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/44080248/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:38:53  来源:igfitidea点击:

Pandas: Join dataframe with condition

pythonpandasjoindataframeconditional-statements

提问by PyRaider

So I have this dataframe (as below), I am trying to join itself by copying it into another df. The join condition as below; Join condition:

所以我有这个数据框(如下),我试图通过将它复制到另一个 df 来加入自己。加入条件如下;加盟条件:

  1. Same PERSONID and Badge_ID
  2. But different SITE_ID1
  3. Timedelta between the two rows should be less than 48 hrs.
  1. 相同的 PERSONID 和 Badge_ID
  2. 但不同的 SITE_ID1
  3. 两行之间的时间增量应小于 48 小时。

Expecting

期待

PERSONID    Badge_ID    Reader_ID1_x    SITE_ID1_x  EVENT_TS1_x         Reader_ID1_y    SITE_ID1_x  EVENT_TS1_y
2553-AMAGID 4229        141                 99          2/1/2016 3:26   145                 97          2/1/2016 3:29
2553-AMAGID 4229        248                 99          2/1/2016 3:26   145                 97          2/1/2016 3:29
2553-AMAGID 4229        145                 97          2/1/2016 3:29   251                 99          2/1/2016 3:29
2553-AMAGID 4229        145                 97          2/1/2016 3:29   291                 99          2/1/2016 3:29

Here is what I tired, Make a copy of df and then filter each df with this condition like below and then join them back again. But the below condition doesn't work :( I tried this filters in SQL before reading into df but that's too slow for 600k+ rows, event with indexes.

这是我累了,制作 df 的副本,然后使用如下所示的条件过滤每个 df,然后再次加入它们。但是下面的条件不起作用:(我在读入 df 之前在 SQL 中尝试了这个过滤器,但这对于 600k+ 行、带索引的事件来说太慢了。

df1 = df1[(df1['Badge_ID']==df2['Badge_ID']) and (df1['SITE_ID1']!=df2['SITE_ID1']) and ((df1['EVENT_TS1']-df2['EVENT_TS1'])<=datetime.timedelta(hours=event_time_diff))]

PERSONID    Badge_ID    Reader_ID1  SITE_ID1              EVENT_TS1
2553-AMAGID     4229    141             99          2/1/2016 3:26:10 AM
2553-AMAGID     4229    248             99          2/1/2016 3:26:10 AM
2553-AMAGID     4229    145             97          2/1/2016 3:29:56 AM
2553-AMAGID     4229    251             99          2/1/2016 3:29:56 AM
2553-AMAGID     4229    291             99          2/1/2016 3:29:56 AM
2557-AMAGID     4219    144             99          2/1/2016 2:36:30 AM
2557-AMAGID     4219    144             99          2/1/2016 2:40:00 AM
2557-AMAGID     4219    250             99          2/1/2016 2:40:00 AM
2557-AMAGID     4219    290             99          2/1/2016 2:40:00 AM
2557-AMAGID     4219    144             97          2/1/2016 4:02:06 AM
2557-AMAGID     4219    250             99          2/1/2016 4:02:06 AM
2557-AMAGID     4219    290             99          2/1/2016 4:02:06 AM
2557-AMAGID     4219    250             97          2/2/2016 1:36:30 AM
2557-AMAGID     4219    290             99          2/3/2016 2:38:30 AM
2559-AMAGID     4227    141             99          2/1/2016 4:33:24 AM
2559-AMAGID     4227    248             99          2/1/2016 4:33:24 AM
2560-AMAGID     4226    141             99          2/1/2016 4:10:56 AM
2560-AMAGID     4226    248             99          2/1/2016 4:10:56 AM
2560-AMAGID     4226    145             99          2/1/2016 4:33:52 AM
2560-AMAGID     4226    251             99          2/1/2016 4:33:52 AM
2560-AMAGID     4226    291             99          2/1/2016 4:33:52 AM
2570-AMAGID     4261    141             99          2/1/2016 4:27:02 AM
2570-AMAGID     4261    248             99          2/1/2016 4:27:02 AM
2986-AMAGID     4658    145             99          2/1/2016 3:14:54 AM
2986-AMAGID     4658    251             99          2/1/2016 3:14:54 AM
2986-AMAGID     4658    291             99          2/1/2016 3:14:54 AM
2986-AMAGID     4658    144             99          2/1/2016 3:26:30 AM
2986-AMAGID     4658    250             99          2/1/2016 3:26:30 AM
2986-AMAGID     4658    290             99          2/1/2016 3:26:30 AM
4133-AMAGID     6263    142             99          2/1/2016 2:44:08 AM
4133-AMAGID     6263    249             99          2/1/2016 2:44:08 AM
4133-AMAGID     6263    141             34          2/1/2016 2:44:20 AM
4133-AMAGID     6263    248             34          2/1/2016 2:44:20 AM
4414-AMAGID     6684    145             99          2/1/2016 3:08:06 AM
4414-AMAGID     6684    251             99          2/1/2016 3:08:06 AM
4414-AMAGID     6684    291             99          2/1/2016 3:08:06 AM
4414-AMAGID     6684    145             22          2/1/2016 3:19:12 AM
4414-AMAGID     6684    251             22          2/1/2016 3:19:12 AM
4414-AMAGID     6684    291             22          2/1/2016 3:19:12 AM
4414-AMAGID     6684    145             99          2/1/2016 4:14:28 AM
4414-AMAGID     6684    251             99          2/1/2016 4:14:28 AM
4414-AMAGID     6684    291             99          2/1/2016 4:14:28 AM
4484-AMAGID     6837    142             99          2/1/2016 2:51:14 AM
4484-AMAGID     6837    249             99          2/1/2016 2:51:14 AM
4484-AMAGID     6837    141             99          2/1/2016 2:51:26 AM
4484-AMAGID     6837    248             99          2/1/2016 2:51:26 AM
4484-AMAGID     6837    141             99          2/1/2016 3:05:12 AM
4484-AMAGID     6837    248             99          2/1/2016 3:05:12 AM
4484-AMAGID     6837    141             99          2/1/2016 3:08:58 AM
4484-AMAGID     6837    248             99          2/1/2016 3:08:58 AM

回答by manojps

Try the following:

请尝试以下操作:

# Transform data in first dataframe
df1 = pd.DataFrame(data)

# Save the data in another datframe
df2 = pd.DataFrame(data)

# Rename column names of second dataframe 
df2.rename(index=str, columns={'Reader_ID1': 'Reader_ID1_x', 'SITE_ID1': 'SITE_ID1_x', 'EVENT_TS1': 'EVENT_TS1_x'}, inplace=True)

# Merge the dataframes into another dataframe based on PERSONID and Badge_ID
df3 = pd.merge(df1, df2, how='outer', on=['PERSONID', 'Badge_ID'])

# Use df.loc() to fetch the data you want
df3.loc[(df3.Reader_ID1 < df3.Reader_ID1_x) & (df3.SITE_ID1 != df3.SITE_ID1_x) & (pd.to_datetime(df3['EVENT_TS1']) - pd.to_datetime(df3['EVENT_TS1_x'])<=datetime.timedelta(hours=event_time_diff))]