Python 使用 Pandas 读取数据(.dat 文件)

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/41025416/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-20 00:21:43  来源:igfitidea点击:

Read data (.dat file) with Pandas

pythonpandasdataframe

提问by KcFnMi

How do I read the following (two columns) data (from a .dat file) with Pandas

如何使用 Pandas 读取以下(两列)数据(来自 .dat 文件)

TIME                      XGSM
2004 006 01 00 01 37 600  1
2004 006 01 00 02 32 800  5
2004 006 01 00 03 28 000  8
2004 006 01 00 04 23 200  11
2004 006 01 00 05 18 400  17

Column separator is (at least) 2 spaces.

列分隔符是(至少)2 个空格。

I tried

我试过

df = pd.read_table("test.dat", sep="\s+", usecols=['TIME', 'XGSM'])
print df

But it prints

但它打印

   TIME  XGSM
   2004     6
   2004     6
   2004     6
   2004     6
   2004     6

采纳答案by jezrael

You can use parameter usecols with order of columns:

您可以使用带有列顺序的参数 usecols:

import pandas as pd
from pandas.compat import StringIO

temp=u"""TIME             XGSM
2004 006 01 00 01 37 600  1
2004 006 01 00 02 32 800  5
2004 006 01 00 03 28 000  8
2004 006 01 00 04 23 200  11
2004 006 01 00 05 18 400  17"""
#after testing replace StringIO(temp) to filename
df = pd.read_csv(StringIO(temp), 
                 sep="\s+", 
                 skiprows=1, 
                 usecols=[0,7], 
                 names=['TIME','XGSM'])

print (df)
   TIME  XGSM
0  2004     1
1  2004     5
2  2004     8
3  2004    11
4  2004    17

Edit:

编辑:

You can use separator regex- 2 and more spaces and then add engine='python'because warning:

您可以使用分隔符regex- 2 个或更多空格,然后添加engine='python'因为警告:

ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.

ParserWarning:回退到 'python' 引擎,因为 'c' 引擎不支持正则表达式分隔符(分隔符 > 1 个字符且不同于 '\s+' 被解释为正则表达式);您可以通过指定 engine='python' 来避免此警告。

import pandas as pd
from pandas.compat import StringIO

temp=u"""TIME              XGSM
2004 006 01 00 01 37 600   1
2004 006 01 00 02 32 800   5
2004 006 01 00 03 28 000   8
2004 006 01 00 04 23 200   11
2004 006 01 00 05 18 400   17"""
#after testing replace StringIO(temp) to filename
df = pd.read_csv(StringIO(temp), sep=r'\s{2,}', engine='python')

print (df)
                       TIME  XGSM
0  2004 006 01 00 01 37 600     1
1  2004 006 01 00 02 32 800     5
2  2004 006 01 00 03 28 000     8
3  2004 006 01 00 04 23 200    11
4  2004 006 01 00 05 18 400    17

回答by Psidom

Could also try pd.read_fwf()(Read a table of fixed-width formatted lines into DataFrame):

也可以尝试pd.read_fwf()将固定宽度格式的行表读入 DataFrame):

import pandas as pd
from io import StringIO

pd.read_fwf(StringIO("""TIME                      XGSM
2004 006 01 00 01 37 600  1
2004 006 01 00 02 32 800  5
2004 006 01 00 03 28 000  8
2004 006 01 00 04 23 200  11
2004 006 01 00 05 18 400  17"""), usecols = ["TIME", "XGSM"])

#   TIME    XGSM
#0  2004    1
#1  2004    5
#2  2004    8
#3  2004    11
#4  2004    17