Python 如何在 Spark DataFrame 中添加常量列?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/32788322/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 12:14:45  来源:igfitidea点击:

How to add a constant column in a Spark DataFrame?

pythonapache-sparkdataframepysparkapache-spark-sql

提问by Evan Zamir

I want to add a column in a DataFramewith some arbitrary value (that is the same for each row). I get an error when I use withColumnas follows:

我想在 a 中添加一个DataFrame具有任意值的列(每行都相同)。我在使用时出现错误withColumn,如下所示:

dt.withColumn('new_column', 10).head(5)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-50-a6d0257ca2be> in <module>()
      1 dt = (messages
      2     .select(messages.fromuserid, messages.messagetype, floor(messages.datetime/(1000*60*5)).alias("dt")))
----> 3 dt.withColumn('new_column', 10).head(5)

/Users/evanzamir/spark-1.4.1/python/pyspark/sql/dataframe.pyc in withColumn(self, colName, col)
   1166         [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)]
   1167         """
-> 1168         return self.select('*', col.alias(colName))
   1169 
   1170     @ignore_unicode_prefix

AttributeError: 'int' object has no attribute 'alias'

It seems that I can trick the function into working as I want by adding and subtracting one of the other columns (so they add to zero) and then adding the number I want (10 in this case):

似乎我可以通过添加和减去其他列之一(因此它们添加为零)然后添加我想要的数字(在这种情况下为 10)来欺骗函数按照我想要的方式工作:

dt.withColumn('new_column', dt.messagetype - dt.messagetype + 10).head(5)
[Row(fromuserid=425, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=47019141, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=49746356, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=93506471, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=80488242, messagetype=1, dt=4809600.0, new_column=10)]

This is supremely hacky, right? I assume there is a more legit way to do this?

这非常hacky,对吧?我认为有更合法的方式来做到这一点?

采纳答案by zero323

Spark 2.2+

火花 2.2+

Spark 2.2 introduces typedLitto support Seq, Map, and Tuples(SPARK-19254) and following calls should be supported (Scala):

Spark 2.2 引入typedLit了支持 SeqMapTuples( SPARK-19254) 并且应该支持以下调用 (Scala):

import org.apache.spark.sql.functions.typedLit

df.withColumn("some_array", typedLit(Seq(1, 2, 3)))
df.withColumn("some_struct", typedLit(("foo", 1, .0.3)))
df.withColumn("some_map", typedLit(Map("key1" -> 1, "key2" -> 2)))

Spark 1.3+(lit), 1.4+(array, struct), 2.0+(map):

火花 1.3+( lit), 1.4+( array, struct), 2.0+( map):

The second argument for DataFrame.withColumnshould be a Columnso you have to use a literal:

for 的第二个参数DataFrame.withColumn应该是 aColumn所以你必须使用文字:

from pyspark.sql.functions import lit

df.withColumn('new_column', lit(10))

If you need complex columns you can build these using blocks like array:

如果您需要复杂的列,您可以使用以下块构建这些列array

from pyspark.sql.functions import array, create_map, struct

df.withColumn("some_array", array(lit(1), lit(2), lit(3)))
df.withColumn("some_struct", struct(lit("foo"), lit(1), lit(.3)))
df.withColumn("some_map", create_map(lit("key1"), lit(1), lit("key2"), lit(2)))

Exactly the same methods can be used in Scala.

在 Scala 中可以使用完全相同的方法。

import org.apache.spark.sql.functions.{array, lit, map, struct}

df.withColumn("new_column", lit(10))
df.withColumn("map", map(lit("key1"), lit(1), lit("key2"), lit(2)))

To provide names for structsuse either aliason each field:

为了提供名称structs或者使用alias上的每个字段:

df.withColumn(
    "some_struct",
    struct(lit("foo").alias("x"), lit(1).alias("y"), lit(0.3).alias("z"))
 )

or caston the whole object

cast在整个对象上

df.withColumn(
    "some_struct", 
    struct(lit("foo"), lit(1), lit(0.3)).cast("struct<x: string, y: integer, z: double>")
 )

It is also possible, although slower, to use an UDF.

虽然速度较慢,但​​也可以使用 UDF。

Note:

注意

The same constructs can be used to pass constant arguments to UDFs or SQL functions.

可以使用相同的构造将常量参数传递给 UDF 或 SQL 函数。

回答by Ayush Vatsyayan

In spark 2.2 there are two ways to add constant value in a column in DataFrame:

在 spark 2.2 中,有两种方法可以在 DataFrame 的列中添加常量值:

1) Using lit

1) 使用 lit

2) Using typedLit.

2)使用typedLit

The difference between the two is that typedLitcan also handle parameterized scala types e.g. List, Seq, and Map

两者的区别在于,typedLit还可以处理参数化的scala类型,例如List、Seq和Map

Sample DataFrame:

示例数据帧:

val df = spark.createDataFrame(Seq((0,"a"),(1,"b"),(2,"c"))).toDF("id", "col1")

+---+----+
| id|col1|
+---+----+
|  0|   a|
|  1|   b|
+---+----+

1) Using lit:Adding constant string value in new column named newcol:

1)使用lit在名为newcol的新列中添加常量字符串值:

import org.apache.spark.sql.functions.lit
val newdf = df.withColumn("newcol",lit("myval"))

Result:

结果:

+---+----+------+
| id|col1|newcol|
+---+----+------+
|  0|   a| myval|
|  1|   b| myval|
+---+----+------+

2) Using typedLit:

2)使用typedLit

import org.apache.spark.sql.functions.typedLit
df.withColumn("newcol", typedLit(("sample", 10, .044)))

Result:

结果:

+---+----+-----------------+
| id|col1|           newcol|
+---+----+-----------------+
|  0|   a|[sample,10,0.044]|
|  1|   b|[sample,10,0.044]|
|  2|   c|[sample,10,0.044]|
+---+----+-----------------+