解决XKCD中的NP完全问题

时间:2020-03-06 14:48:25  来源:igfitidea点击:

有问题的问题/漫画:http://xkcd.com/287/

我不确定这是否是最好的方法,但是到目前为止,这是我要提出的。我正在使用CFML,但任何人都应该可以读取。

<cffunction name="testCombo" returntype="boolean">
    <cfargument name="currentCombo" type="string" required="true" />
    <cfargument name="currentTotal" type="numeric" required="true" />
    <cfargument name="apps" type="array" required="true" />

    <cfset var a = 0 />
    <cfset var found = false />

    <cfloop from="1" to="#arrayLen(arguments.apps)#" index="a">
        <cfset arguments.currentCombo = listAppend(arguments.currentCombo, arguments.apps[a].name) />
        <cfset arguments.currentTotal = arguments.currentTotal + arguments.apps[a].cost />
        <cfif arguments.currentTotal eq 15.05>
            <!--- print current combo --->
            <cfoutput><strong>#arguments.currentCombo# = 15.05</strong></cfoutput><br />
            <cfreturn true />
        <cfelseif arguments.currentTotal gt 15.05>
            <cfoutput>#arguments.currentCombo# > 15.05 (aborting)</cfoutput><br />
            <cfreturn false />
        <cfelse>
            <!--- less than 15.05 --->
            <cfoutput>#arguments.currentCombo# < 15.05 (traversing)</cfoutput><br />
            <cfset found = testCombo(arguments.currentCombo, arguments.currentTotal, arguments.apps) />
        </cfif>
    </cfloop>
</cffunction>

<cfset mf = {name="Mixed Fruit", cost=2.15} />
<cfset ff = {name="French Fries", cost=2.75} />
<cfset ss = {name="side salad", cost=3.35} />
<cfset hw = {name="hot wings", cost=3.55} />
<cfset ms = {name="moz sticks", cost=4.20} />
<cfset sp = {name="sampler plate", cost=5.80} />
<cfset apps = [ mf, ff, ss, hw, ms, sp ] />

<cfloop from="1" to="6" index="b">
    <cfoutput>#testCombo(apps[b].name, apps[b].cost, apps)#</cfoutput>
</cfloop>

上面的代码告诉我,唯一加起来为$ 15.05的组合是7个混合水果订单,并且需要232次testCombo函数的执行才能完成。

是否有更好的算法可以得出正确的解决方案?我找到正确的解决方案了吗?

解决方案

阅读背包问题。

实际上,我已经对算法进行了一些重构。我错过了几个正确的组合,这是由于这样的事实,当费用超过15.05时我就立即返回-我不费心检查我可以添加的其他(便宜的)物品。这是我的新算法:

<cffunction name="testCombo" returntype="numeric">
    <cfargument name="currentCombo" type="string" required="true" />
    <cfargument name="currentTotal" type="numeric" required="true" />
    <cfargument name="apps" type="array" required="true" />

    <cfset var a = 0 />
    <cfset var found = false /> 
    <cfset var CC = "" />
    <cfset var CT = 0 />

    <cfset tries = tries + 1 />

    <cfloop from="1" to="#arrayLen(arguments.apps)#" index="a">
        <cfset combos = combos + 1 />
        <cfset CC = listAppend(arguments.currentCombo, arguments.apps[a].name) />
        <cfset CT = arguments.currentTotal + arguments.apps[a].cost />
        <cfif CT eq 15.05>
            <!--- print current combo --->
            <cfoutput><strong>#CC# = 15.05</strong></cfoutput><br />
            <cfreturn true />
        <cfelseif CT gt 15.05>
            <!--<cfoutput>#arguments.currentCombo# > 15.05 (aborting)</cfoutput><br />-->
        <cfelse>
            <!--- less than 15.50 --->
            <!--<cfoutput>#arguments.currentCombo# < 15.05 (traversing)</cfoutput><br />-->
            <cfset found = testCombo(CC, CT, arguments.apps) />
        </cfif>
    </cfloop>
    <cfreturn found />
</cffunction>

<cfset mf = {name="Mixed Fruit", cost=2.15} />
<cfset ff = {name="French Fries", cost=2.75} />
<cfset ss = {name="side salad", cost=3.35} />
<cfset hw = {name="hot wings", cost=3.55} />
<cfset ms = {name="moz sticks", cost=4.20} />
<cfset sp = {name="sampler plate", cost=5.80} />
<cfset apps = [ mf, ff, ss, hw, ms, sp ] />

<cfset tries = 0 />
<cfset combos = 0 />

<cfoutput>
    <cfloop from="1" to="6" index="b">
        #testCombo(apps[b].name, apps[b].cost, apps)#
    </cfloop>
    <br />
    tries: #tries#<br />
    combos: #combos#
</cfoutput>

输出:

Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit,Mixed Fruit = 15.05
Mixed Fruit,hot wings,hot wings,sampler plate = 15.05
Mixed Fruit,hot wings,sampler plate,hot wings = 15.05
Mixed Fruit,sampler plate,hot wings,hot wings = 15.05
false false false hot wings,Mixed Fruit,hot wings,sampler plate = 15.05
hot wings,Mixed Fruit,sampler plate,hot wings = 15.05
hot wings,hot wings,Mixed Fruit,sampler plate = 15.05
hot wings,sampler plate,Mixed Fruit,hot wings = 15.05
false false sampler plate,Mixed Fruit,hot wings,hot wings = 15.05
sampler plate,hot wings,Mixed Fruit,hot wings = 15.05
false
tries: 2014
combos: 12067

我认为这可能具有所有正确的组合,但我的问题仍然存在:是否有更好的算法?

现在我们已经拥有了所有正确的组合,但是我们仍然需要检查的内容比需要的要多(结果显示的许多排列证明了这一点)。另外,我们将省略最后一个达到15.05标记的项目。

我有一个PHP版本,可以进行209次递归调用的迭代(如果得到所有排列,则可以在2012年实现)。如果恰好在循环结束之前拔出刚刚检查的项目,则可以减少计数。

我不知道CF语法,但是会是这样的:

<cfelse>
            <!--- less than 15.50 --->
            <!--<cfoutput>#arguments.currentCombo# < 15.05 (traversing)</cfoutput><br />-->
            <cfset found = testCombo(CC, CT, arguments.apps) />
        ------- remove the item from the apps array that was just checked here ------
    </cfif>
</cfloop>

编辑:供参考,这是我的PHP版本:

<?
  function rc($total, $string, $m) {
    global $c;

    $m2 = $m;
    $c++;

    foreach($m as $i=>$p) {
      if ($total-$p == 0) {
        print "$string $i\n";
        return;
      }
      if ($total-$p > 0) {
        rc($total-$p, $string . " " . $i, $m2);
      }
      unset($m2[$i]);
    }
  }

  $c = 0;

  $m = array("mf"=>215, "ff"=>275, "ss"=>335, "hw"=>355, "ms"=>420, "sp"=>580);
  rc(1505, "", $m);
  print $c;
?>

输出

mf mf mf mf mf mf mf
 mf hw hw sp
209

编辑2:

由于要解释为什么可以删除元素将花费比我在注释中多得多的内容,因此在此处添加它。

基本上,每次递归都会找到包含当前搜索元素的所有组合(例如,第一步将找到包含至少一个混合水果的所有内容)。理解它的最简单方法是跟踪执行,但是由于这将占用大量空间,因此我将其视为目标为6.45.

MF (2.15)
  MF (4.30)
    MF (6.45) *
    FF (7.05) X
    SS (7.65) X
    ...
  [MF removed for depth 2]
  FF (4.90)
    [checking MF now would be redundant since we checked MF/MF/FF previously]
    FF (7.65) X
    ...
  [FF removed for depth 2]
  SS (5.50)
  ...
[MF removed for depth 1]

至此,我们已经检查了包含任何混合水果的每个组合,因此无需再次检查混合水果。我们还可以使用相同的逻辑在每个更深层次的递归中修剪数组。

像这样跟踪它实际上暗示了另一个节省时间的方法-知道价格是从低到高排序的,这意味着一旦超过目标,我们就无需继续检查商品。

这是F#的解决方案:

#light

type Appetizer = { name : string; cost : int }

let menu = [
    {name="fruit"; cost=215}
    {name="fries"; cost=275}
    {name="salad"; cost=335}
    {name="wings"; cost=355}
    {name="moz sticks"; cost=420}
    {name="sampler"; cost=580}
    ] 

// Choose: list<Appetizer> -> list<Appetizer> -> int -> list<list<Appetizer>>
let rec Choose allowedMenu pickedSoFar remainingMoney =
    if remainingMoney = 0 then
        // solved it, return this solution
        [ pickedSoFar ]
    else
        // there's more to spend
        [match allowedMenu with
         | [] -> yield! []  // no more items to choose, no solutions this branch
         | item :: rest -> 
            if item.cost <= remainingMoney then
                // if first allowed is within budget, pick it and recurse
                yield! Choose allowedMenu (item :: pickedSoFar) (remainingMoney - item.cost)
            // regardless, also skip ever picking more of that first item and recurse
            yield! Choose rest pickedSoFar remainingMoney]

let solutions = Choose menu [] 1505

printfn "%d solutions:" solutions.Length 
solutions |> List.iter (fun solution ->
    solution |> List.iter (fun item -> printf "%s, " item.name)
    printfn ""
)

(*
2 solutions:
fruit, fruit, fruit, fruit, fruit, fruit, fruit,
sampler, wings, wings, fruit,
*)

递归(在Perl中)是否更优雅?

#!/usr/bin/perl
use strict;
use warnings;

my @weights  = (2.15, 2.75, 3.35, 3.55, 4.20, 5.80);

my $total = 0;
my @order = ();

iterate($total, @order);

sub iterate
{
    my ($total, @order) = @_;
    foreach my $w (@weights)
    {
        if ($total+$w == 15.05)
        {
            print join (', ', (@order, $w)), "\n";
        }
        if ($total+$w < 15.05)
        {
            iterate($total+$w, (@order, $w));
        }
    }
}

输出

`marco @ unimatrix-01:〜$ ./xkcd-knapsack.pl

2.15、2.15、2.15、2.15、2.15、2.15、2.15
2.15、3.55、3.55、5.8
2.15、3.55、5.8、3.55
2.15、5.8、3.55、3.55
3.55、2.15、3.55、5.8
3.55、2.15、5.8、3.55
3.55、3.55、2.15、5.8
3.55、5.8、2.15、3.55
5.8、2.15、3.55、3.55
5.8、3.55、2.15、3.55
`

关于NP完全问题的意义不在于在一个小的数据集上是棘手的,而是解决它的工作量以大于多项式的速率增长,即没有O(n ^ x)算法。

如果时间复杂度为O(n!),如(我相信)上面提到的两个问题,那就是NP。

从@rcar的答案中学习,并在以后进行另一次重构,我得到了以下内容。

与我编写的许多代码一样,我已经从CFML重构为CFScript,但是代码基本上是相同的。

我添加了他关于数组动态起点的建议(而不是通过值传递数组并更改其值以用于将来的递归),这使我获得了与他得到的相同的统计信息(209个递归,571个组合价格检查(循环迭代) )),然后对此进行了改进,即假设该数组将按成本进行排序-因为它是-且一旦超过目标价格便立即中断。有了休息,我们减少到209个递归和376个循环迭代。

function testCombo(minIndex, currentCombo, currentTotal){
    var a = 0;
    var CC = "";
    var CT = 0;
    var found = false;

    tries += 1;
    for (a=arguments.minIndex; a <= arrayLen(apps); a++){
        combos += 1;
        CC = listAppend(arguments.currentCombo, apps[a].name);
        CT = arguments.currentTotal + apps[a].cost;
        if (CT eq 15.05){
            //print current combo
            WriteOutput("<strong>#CC# = 15.05</strong><br />");
            return(true);
        }else if (CT gt 15.05){
            //since we know the array is sorted by cost (asc),
            //and we've already gone over the price limit,
            //we can ignore anything else in the array
            break; 
        }else{
            //less than 15.50, try adding something else
            found = testCombo(a, CC, CT);
        }
    }
    return(found);
}

mf = {name="mixed fruit", cost=2.15};
ff = {name="french fries", cost=2.75};
ss = {name="side salad", cost=3.35};
hw = {name="hot wings", cost=3.55};
ms = {name="mozarella sticks", cost=4.20};
sp = {name="sampler plate", cost=5.80};
apps = [ mf, ff, ss, hw, ms, sp ];

tries = 0;
combos = 0;

testCombo(1, "", 0);

WriteOutput("<br />tries: #tries#<br />combos: #combos#");

可以对算法进行哪些其他改进?

即使背包是NP完整版,它也是一个非常特殊的问题:常用的动态程序实际上非常出色(http://en.wikipedia.org/wiki/Knapsack_problem)

并且,如果我们进行了正确的分析,结果将是O(nW),n是项的of,W是目标数。问题是当我们必须在较大的W上进行DP运算时,这就是我们得到NP行为的时候。但是,在大多数情况下,背包的行为都相当合理,我们可以毫无问题地解决背包中的很多问题。就NP完全问题而言,背包是最简单的问题之一。

item(X) :- member(X,[215, 275, 335, 355, 420, 580]).
solution([X|Y], Z) :- item(X), plus(S, X, Z), Z >= 0, solution(Y, S).
solution([], 0).

它提供了解决方案的所有排列方式,但是我认为我在代码大小方面击败了其他所有人。

?- solution(X, 1505).

X = [215, 215, 215, 215, 215, 215, 215] ;

X = [215, 355, 355, 580] ;

X = [215, 355, 580, 355] ;

X = [215, 580, 355, 355] ;

X = [355, 215, 355, 580] ;

X = [355, 215, 580, 355] ;

X = [355, 355, 215, 580] ;

X = [355, 355, 580, 215] ;

X = [355, 580, 215, 355] ;

X = [355, 580, 355, 215] ;

X = [580, 215, 355, 355] ;

X = [580, 355, 215, 355] ;

X = [580, 355, 355, 215] ;

No

swiprolog解决方案:

>>> from constraint import *
>>> problem = Problem()
>>> menu = {'mixed-fruit': 2.15,
...  'french-fries': 2.75,
...  'side-salad': 3.35,
...  'hot-wings': 3.55,
...  'mozarella-sticks': 4.20,
...  'sampler-plate': 5.80}
>>> for appetizer in menu:
...    problem.addVariable( appetizer, [ menu[appetizer] * i for i in range( 8 )] )
>>> problem.addConstraint(ExactSumConstraint(15.05))
>>> problem.getSolutions()
[{'side-salad': 0.0, 'french-fries': 0.0, 'sampler-plate': 5.7999999999999998, 'mixed-fruit': 2.1499999999999999, 'mozarella-sticks': 0.0, 'hot-wings': 7.0999999999999996},
 {'side-salad': 0.0, 'french-fries': 0.0, 'sampler-plate': 0.0, 'mixed-fruit':     15.049999999999999, 'mozarella-sticks': 0.0, 'hot-wings': 0.0}]

这是使用constraint.py的解决方案

因此,解决方案是订购一个采样盘,一个混合水果和2个热翅,或者订购7个混合水果。

....

private void findAndReportSolutions(
    int target,  // goal to be achieved
    int balance, // amount of goal remaining
    int index    // menu item to try next
) {
    ++calls;
    if (balance == 0) {
        reportSolution(target);
        return; // no addition to perfect order is possible
    }
    if (index == items.length) {
        ++falls;
        return; // ran out of menu items without finding solution
    }
    final int price = items[index].price;
    if (balance < price) {
        return; // all remaining items cost too much
    }
    int maxCount = balance / price; // max uses for this item
    for (int n = maxCount; 0 <= n; --n) { // loop for this item, recur for others
        ++loops;
        counts[index] = n;
        findAndReportSolutions(
            target, balance - n * price, index + 1
        );
    }
}

public void reportSolutionsFor(int target) {
    counts = new int[items.length];
    calls = loops = falls = 0;
    findAndReportSolutions(target, target, 0);
    ps.printf("%d calls, %d loops, %d falls%n", calls, loops, falls);
}

public static void main(String[] args) {
    MenuItem[] items = {
        new MenuItem("mixed fruit",       215),
        new MenuItem("french fries",      275),
        new MenuItem("side salad",        335),
        new MenuItem("hot wings",         355),
        new MenuItem("mozzarella sticks", 420),
        new MenuItem("sampler plate",     580),
    };
    Solver solver = new Solver(items);
    solver.reportSolutionsFor(1505);
}

...

我会对算法本身的设计提出一个建议(这就是我如何解释原始问题的意图)。这是我编写的解决方案的一部分:

(请注意,构造函数会按价格递增对菜单项进行排序,以在剩余余额小于任何剩余菜单项时启用固定时间提前终止。)

7 mixed fruit (1505) = 1505
1 mixed fruit (215) + 2 hot wings (710) + 1 sampler plate (580) = 1505
348 calls, 347 loops, 79 falls

样本运行的输出为:

我要强调的设计建议是,在上面的代码中,每个findAndReportSolution(...)嵌套(递归)调用都处理一个菜单项的数量,该数量由" index"参数标识。换句话说,递归嵌套与一组嵌套循环的行为并行。最外层计算第一个菜单项的可能用途,下一个计数第二个菜单项的用途,依此类推。(当然,递归的使用使代码摆脱了对特定数量菜单项的依赖!)

我建议这样做可以使代码设计更容易,并且更容易理解每​​次调用的功能(考虑到特定项目的所有可能使用,将菜单的其余部分委派给下级调用)。这也避免了产生多项目解决方案的所有安排的组合爆炸(如上述输出的第二行,仅发生一次,而不是以项目的不同顺序重复发生)。

我试图最大化代码的"显而易见性",而不是试图最小化某些特定方法的调用次数。例如,上面的设计让委派的调用确定是否已达到解决方案,而不是将检查结果包装在调用点周围,这样可以减少调用次数,但会使代码混乱。

嗯,你知道这很奇怪。解决方案是菜单上第一项中的七个。

既然这显然是要在短时间内用纸和笔解决的,为什么不将订单总数除以每件商品的价格,以查看是否有机会订购了一件商品的倍数?

例如,

15.05 / 2.15 = 7种混合水果
15.05 / 2.75 = 5.5炸薯条。

然后继续简单的组合...

15 /(2.15 + 2.75)= 3.06122449混合水果和炸薯条。

换句话说,假设该解决方案被认为是简单且可解决的,而无需访问计算机。然后测试最简单,最明显(因此隐藏在视线中)的解决方案是否有效。

我发誓我会在这个周末在当地的购物街上拉这个,当我在俱乐部关门后的4:30 AM订购价值$ 4.77的开胃菜(含税)。

这是Clojure中的并发实现。要计算"(价格为15.05的商品)",大约需要进行14次组合生成的递归,并进行大约10次可能性检查。花了我大约6分钟的时间,才能在我的Intel Q9300上计算出"(含价格的商品100)"。

;; np-complete.clj
;; A Clojure solution to XKCD #287 "NP-Complete"
;; By Sam Fredrickson
;;
;; The function "items-with-price" returns a sequence of items whose sum price
;; is equal to the given price, or nil.

(defstruct item :name :price)

(def *items* #{(struct item "Mixed Fruit" 2.15)
               (struct item "French Fries" 2.75)
               (struct item "Side Salad" 3.35)
               (struct item "Hot Wings" 3.55)
               (struct item "Mozzarella Sticks" 4.20)
               (struct item "Sampler Plate" 5.80)})

(defn items-with-price [price]
  (let [check-count (atom 0)
        recur-count (atom 0)
        result  (atom nil)
        checker (agent nil)
        ; gets the total price of a seq of items.
        items-price (fn [items] (apply + (map #(:price %) items)))
        ; checks if the price of the seq of items matches the sought price.
        ; if so, it changes the result atom. if the result atom is already
        ; non-nil, nothing is done.
        check-items (fn [unused items]
                      (swap! check-count inc)
                      (if (and (nil? @result)
                               (= (items-price items) price))
                        (reset! result items)))
        ; lazily generates a list of combinations of the given seq s.
        ; haven't tested well...
        combinations (fn combinations [cur s]
                       (swap! recur-count inc)
                       (if (or (empty? s)
                               (> (items-price cur) price))
                         '()
                         (cons cur
                          (lazy-cat (combinations (cons (first s) cur) s)
                                    (combinations (cons (first s) cur) (rest s))
                                    (combinations cur (rest s))))))]
    ; loops through the combinations of items, checking each one in a thread
    ; pool until there are no more combinations or the result atom is non-nil.
    (loop [items-comb (combinations '() (seq *items*))]
      (if (and (nil? @result)
               (not-empty items-comb))
        (do (send checker check-items (first items-comb))
            (recur (rest items-comb)))))
    (await checker)
    (println "No. of recursions:" @recur-count)
    (println "No. of checks:" @check-count)
    @result))

这只会给出第一个找到的答案,如果没有答案,则为nil,因为这就是所有问题的要求。为什么要求我们做更多的工作;)?

class Solver(object):
    def __init__(self):
        self.solved = False
        self.total = 0
    def solve(s, p, pl, curList = []):
        poss = [i for i in sorted(pl, reverse = True) if i <= p]
        if len(poss) == 0 or s.solved:
            s.total += 1
            return curList
        if abs(poss[0]-p) < 0.00001:
            s.solved = True # Solved it!!!
            s.total += 1
            return curList + [poss[0]]
        ml,md = [], 10**8
        for j in [s.solve(p-i, pl, [i]) for i in poss]:
            if abs(sum(j)-p)<md: ml,md = j, abs(sum(j)-p)
        s.total += 1
        return ml + curList

priceList = [5.8, 4.2, 3.55, 3.35, 2.75, 2.15]
appetizers = ['Sampler Plate', 'Mozzarella Sticks', \
              'Hot wings', 'Side salad', 'French Fries', 'Mixed Fruit']

menu = zip(priceList, appetizers)

sol = Solver()
q = sol.solve(15.05, priceList)
print 'Total time it runned: ', sol.total
print '-'*30
order = [(m, q.count(m[0])) for m in menu if m[0] in q]
for o in order:
    print '%d x %s \t\t\t (%.2f)' % (o[1],o[0][1],o[0][0])

print '-'*30
ts = 'Total: %.2f' % sum(q)
print ' '*(30-len(ts)-1),ts

在python中。
我在使用"全局变量"时遇到了一些问题,因此我将函数作为对象的方法。它是递归的,它会在漫画中自问29次问题,并在第一次成功比赛后停止

Total time it runned:  29
------------------------------
1 x Sampler Plate   (5.80)
2 x Hot wings       (3.55)
1 x Mixed Fruit       (2.15)
------------------------------
               Total: 15.05

输出:

如果我们需要优化的算法,则最好按降序尝试价格。这样一来,我们可以先用尽所有剩余的金额,然后查看如何填充剩余的金额。

此外,我们可以使用数学方法来计算每次开始的每种食品的最大数量,因此我们不会尝试超过15.05美元目标的组合。

public class NPComplete {
    private static final int[] FOOD = { 580, 420, 355, 335, 275, 215 };
    private static int tries;

    public static void main(String[] ignore) {
        tries = 0;
        addFood(1505, "", 0);
        System.out.println("Combinations tried: " + tries);
    }

    private static void addFood(int goal, String result, int index) {
        // If no more food to add, see if this is a solution
        if (index >= FOOD.length) {
            tries++;
            if (goal == 0)
                System.out.println(tries + " tries: " + result.substring(3));
            return;
        }

        // Try all possible quantities of this food
        // If this is the last food item, only try the max quantity
        int qty = goal / FOOD[index];
        do {
            addFood(goal - qty * FOOD[index],
                    result + " + " + qty + " * " + FOOD[index], index + 1);
        } while (index < FOOD.length - 1 && --qty >= 0);
    }
}

该算法只需尝试88种组合即可获得完整答案,这看起来是迄今为止发布的最低答案:

9 tries: 1 * 580 + 0 * 420 + 2 * 355 + 0 * 335 + 0 * 275 + 1 * 215
88 tries: 0 * 580 + 0 * 420 + 0 * 355 + 0 * 335 + 0 * 275 + 7 * 215
Combinations tried: 88

段落数量不匹配