pandas 将字符串日期时间转换为熊猫日期时间
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/41501726/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Convert string date time to pandas datetime
提问by Sourabh Saxena
I am new to Pandas and Python. I want to do some date time operations in my script. I am getting date time information from a csv file in following format: 01APR2017 6:59
我是 Pandas 和 Python 的新手。我想在我的脚本中做一些日期时间操作。我从以下格式的 csv 文件中获取日期时间信息: 01APR2017 6:59
How to convert it into pandas datetime format? Something like: 2017-04-01 06:59:00
如何将其转换为Pandas日期时间格式?类似于: 2017-04-01 06:59:00
回答by jezrael
You can use to_datetime
with parameter format
:
您可以使用to_datetime
参数format
:
s = pd.Series(['01APR2017 6:59','01APR2017 6:59'])
print (s)
0 01APR2017 6:59
1 01APR2017 6:59
dtype: object
print (pd.to_datetime(s, format='%d%b%Y %H:%M'))
0 2017-04-01 06:59:00
1 2017-04-01 06:59:00
dtype: datetime64[ns]
Another possible solution is use date_parser
in read_csv
:
另一种可能的解决方案是使用date_parser
在read_csv
:
import pandas as pd
from pandas.compat import StringIO
temp=u"""date
01APR2017 6:59
01APR2017 6:59"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
parser = lambda x: pd.datetime.strptime(x, '%d%b%Y %H:%M')
df = pd.read_csv(StringIO(temp), parse_dates=[0], date_parser=parser)
print (df)
date
0 2017-04-01 06:59:00
1 2017-04-01 06:59:00
print (df.date.dtype)
datetime64[ns]
EDIT by comment:
通过评论编辑:
If values cannot be parsed to datetime
, add parameter errors='coerce'
for convert to NaT
:
如果无法将值解析为datetime
,请添加errors='coerce'
用于转换为的参数NaT
:
s = pd.Series(['01APR2017 6:59','01APR2017 6:59', 'a'])
print (s)
0 01APR2017 6:59
1 01APR2017 6:59
2 a
dtype: object
print (pd.to_datetime(s, format='%d%b%Y %H:%M', errors='coerce'))
0 2017-04-01 06:59:00
1 2017-04-01 06:59:00
2 NaT
dtype: datetime64[ns]