C++ 计算矩阵中对角线的总和

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/9008505/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-27 12:12:16  来源:igfitidea点击:

calculate the sum of diagonals in a matrix

c++algorithmmatrix

提问by Igor Ivanovski

I need to calculate the sum of two diagonals in a matrix in C++, I already have a solution for that but I must be dumb because I cant understand what it is doing, so I would like to know if there is another version which I can understand. here is the code which does the job:

我需要在 C++ 中计算矩阵中两个对角线的总和,我已经有一个解决方案,但我必须是愚蠢的,因为我无法理解它在做什么,所以我想知道是否有另一个版本我可以理解。这是完成工作的代码:

cout<<"Jepi rangun e  matrices"<<endl;  // pra bejme manipulim me matrice katrore ku rreshtat=kolonat
cin>>n;
cout<<"Tani jepi elementet e matrices"<<endl; // lexohet matrica

for(i=1;i<=n;i++)
{
     for(j=1;j<=n;j++)
        cin>>a[i][j];
}

d=0;
s=0; // ketu e keni kushtin si dhe mbledhjen per te dy diagonalet me dy variabla te ndryshme

for(i=1;i<=n;i++)
    for(j=1;j<=n;j++)
    {
        if(i==j)
            d=d+a[i][j];
        if(j==n-i+1 || i==n-j+1) 
            s=s+a[i][j];
    }

The part that is difficult to understand is

难以理解的部分是

if(j==n-i+1 || i==n-j+1) 
    s=s+a[i][j];

Here is the entire code that I changed but it doesnt work for the secondary diagonal:

这是我更改的整个代码,但它不适用于次对角线:

#include <iostream>
using namespace std;

int main()
{
    int d=0,s=0; // ketu e keni kushtin si dhe mbledhjen per te dy diagonalet me dy variabla te ndryshme
    int i,j,n;
    int a[5][5];

    cout<<"Jepi rangun e  matrices"<<endl;  // pra bejme manipulim me matrice katrore ku rreshtat=kolonat
    cin>>n;
    cout<<"Tani jepi elementet e matrices"<<endl; // lexohet matrica

    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
            cin>>a[i][j];
    }

    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
        {
            if(i==j) 
                d+=a[i][j]; //principal diagonal 
            if(i+j==n-1)
                s+=a[i][j];//secondary diagonal

        }
    }

    cout << d << endl;
    cout << s << endl;
    cin.get();
    cin.get();
    return 0;
}

回答by Vyktor

It would be nice to have comments in English, but, the your code does (second loop):

用英语发表评论会很好,但是,您的代码确实如此(第二个循环):

browse all rows
  browse all cells
    if i == j (is in main diagonal):
        increase one sum
    if i == n - i + 1 (the other diagonal)
        increase the second sum

The much nicer and much more effective code (using n, instead of n^2) would be:

更好、更有效的代码(使用n, 而不是n^2)将是:

for( int i = 0; i < n; i++){
   d += a[i][i];  // main diagonal
   s += a[i][n-i-1]; // second diagonal (you'll maybe need to update index)
}

This goes straight trough the diagonals (both at the one loop!) and doesn't go trough other items.

这会直接穿过对角线(都在一个循环中!)并且不会穿过其他项目。

EDIT:

编辑:

Main diagonal has coordinates {(1,1), (2,2), ..., (i,i)}(therefor i == j).

主对角线有坐标{(1,1), (2,2), ..., (i,i)}(因此i == j)。

Secondary diagonal has coordinates (in matrix 3x3): {(1,3), (2,2),(3,1)}which in general is: {(1,n-1+1), (2, n-2+1), ... (i, n-i+1), .... (n,1)}. But in C, arrays are indexed from 0, not 1 so you won't need that +1(probably).

次对角线具有坐标(在矩阵 3x3 中):{(1,3), (2,2),(3,1)}通常是:{(1,n-1+1), (2, n-2+1), ... (i, n-i+1), .... (n,1)}。但是在 C 中,数组从 0 开始索引,而不是 1,所以你不需要它+1(可能)。

All those items in secondary diagonal than has to fit condition: i == n - j + 1(again due to C's indexing from 0 +1changes to -1(i=0,, n=3, j=2, j = n - i - 1)).

次对角线上的所有项目都必须符合条件:(i == n - j + 1再次由于 C 的索引从 0+1更改为-1( i=0,, n=3, j=2, j = n - i - 1))。

You can achieve all this in one loop (code above).

您可以在一个循环中实现所有这些(上面的代码)。

回答by Ionel Lupu

int diag1=0;
int diag2=0;

for (i=0;i<n;i++)
 for (j=0;j<n;j++){

  if(i==j)  diag1+=a[i][j]; //principal diagonal 
  if(i+j==n-1) diag2+=a[i][j];//secondary diagonal

}

}

To understand this algorithm better you should paint a matrix on you notebook and number it's elements with their position in matrix,then apply the algorithm step by step.I'm 100% sure that you will understand

为了更好地理解这个算法,你应该在你的笔记本上画一个矩阵,用它们在矩阵中的位置给它的元素编号,然后一步一步地应用这个算法。我 100% 肯定你会理解

回答by penelope

How about I try to explain this version? :D

我试着解释一下这个版本怎么样?:D

There are 3 important parts of the code:

代码有3个重要部分:

  • inputing the matrix
  • calculating major diagonal ( \ direction)
  • calculating minor diagonal ( / direction)
  • 输入矩阵
  • 计算主对角线(\方向)
  • 计算小对角线( / 方向)

And here they are, explained:

他们在这里,解释说:

// input elements
for(i=1;i<=n;i++) // from left to right
{
    for(j=1;j<=n;j++) // from up to down
        cin>>a[i][j]; // input element at (i,j) position
}

Here, d and s contain the inter-values of major and minor diagonal respectively. At the end of 2 loops, they will contain the results

这里,d 和 s 分别包含主要和次要对角线的值。在 2 个循环结束时,它们将包含结果

for (i=1;i<=n;i++)
     for (j=1;j<=n;j++)
     {
        if(i==j)          // major diagonal - if coordinates are the same
           d=d+a[i][j];   // e.g. (1,1), (2,2)
        if(j==n-i+1 || i==n-j+1)  // coordinates of the minor diagonal - check
           s=s+a[i][j];           // e.g. n=3 (3,1) (2,2) ...
      }

Hope this helps.

希望这可以帮助。

Note that this code starts matrix coordinates at 1 instead of 0, so you will actually need to allocate (n+1)x(n+1)space for the matrix:

请注意,此代码从 1 而不是 0 开始矩阵坐标,因此您实际上需要(n+1)x(n+1)为矩阵分配空间:

double a[n+1][n+1];

before using it.

在使用它之前。

Also, the code you gave is not most effective. It has O(n^2)complexity, while the task can be done in O(n)like so:

此外,您提供的代码并不是最有效的。它具有O(n^2)复杂性,而任务可以O(n)像这样完成:

// matrix coordinates now start from 0
for (int i=0; i < n; ++i){
    d += a[i][i]; // major
    s += a[i][n-1-i]; // minor
}

回答by Abdul Rehman

int num[5][5]={0}; //decleration
int i=0,j=0,sum=0; 
for (int i=0;i<5;i++)
{
    for (int j=0;j<5;j++)
    {
        cin>>num[i][j];
    }                          //Taking Matrix input
}
        cout<<endl<<"The Matrix is "<<endl;
    for (int i=0;i<5;i++)
    {
        for (int j=0;j<5;j++)
        {
            cout<<num[i][j]<<" ";
        }
            cout<<endl;               //Displaying the Matrix
    }                               
cout<<endl<<"The sum of diagonals of the matrix is "<<endl;
if(i==j) 
{
    for (i=0;i<5;i++)
    {
        for (j=0;j<5;j++)
        {
            if (i==j)       //This loop works where i and j will be equal
            {
            sum=sum+num[i][j];
            }
        }
    }
    cout<<sum;
}
else   //Some times the user creates 4 x 3 matrix or so than diagonals not match so. . . 
{
    cout<<"The sum is not Possible";
}

回答by Tnahsoe Tnhsen

you must use i + j == n + 1instead of i + j == n - 1for secondary diagonal i.e

您必须使用i + j == n + 1而不是i + j == n - 1用于辅助对角线,即

for(i = 1; i <= n; i++)
{
    for(j = 1; j <= n; j++)
    {
        if(i == j) 
            d += a[i][j]; //principal diagonal 
        if(i + j == n+1)
            s += a[i][j];//secondary diagonal

    }
}