pandas 根据列值选择行
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45642845/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Selecting rows based on a column value
提问by Manoj Agrawal
I have a data frame something like this
我有一个像这样的数据框
data = {'ID': [1,2,3,4,5,6,7,8,9],
'Doc':['Order','Order','Inv','Order','Order','Shp','Order', 'Order','Inv'],
'Rep':[101,101,101,102,102,102,103,103,103]}
frame = pd.DataFrame(data)
Doc ID Rep
0 Order 1 101
1 Order 2 101
2 Inv 3 101
3 Order 4 102
4 Order 5 102
5 Shp 6 102
6 Order 7 103
7 Order 8 103
8 Inv 9 103
Now I want to select rows for Rep that have Doc type as Inv only.
现在我想为 Rep 选择仅 Doc 类型为 Inv 的行。
I want a dataframe as
我想要一个数据框作为
Doc ID Rep
0 Order 1 101
1 Order 2 101
2 Inv 3 101
6 Order 7 103
7 Order 8 103
8 Inv 9 103
All reps will have Doc type Orders so I was trying to do something like this
所有代表都会有 Doc 类型的订单,所以我试图做这样的事情
frame[frame.Rep == frame.Rep[frame.Doc == 'Inv']]
but I get an error
但我收到一个错误
ValueError: Can only compare identically-labeled Series objects
ValueError:只能比较标记相同的系列对象
回答by jezrael
You can use twice boolean indexing
- first get all Rep
by condition and then all rows by isin
:
您可以使用两次boolean indexing
- 首先Rep
按条件获取所有行,然后按isin
以下方式获取所有行:
a = frame.loc[frame['Doc'] == 'Inv', 'Rep']
print (a)
2 101
8 103
Name: Rep, dtype: int64
df = frame[frame['Rep'].isin(a)]
print (df)
Doc ID Rep
0 Order 1 101
1 Order 2 101
2 Inv 3 101
6 Order 7 103
7 Order 8 103
8 Inv 9 103
Solution with query
:
解决方案query
:
a = frame.query("Doc == 'Inv'")['Rep']
df = frame.query("Rep in @a")
print (df)
Doc ID Rep
0 Order 1 101
1 Order 2 101
2 Inv 3 101
6 Order 7 103
7 Order 8 103
8 Inv 9 103
Timings:
时间:
np.random.seed(123)
N = 1000000
L = ['Order','Shp','Inv']
frame = pd.DataFrame({'Doc': np.random.choice(L, N, p=[0.49, 0.5, 0.01]),
'ID':np.arange(1,N+1),
'Rep':np.random.randint(1000, size=N)})
print (frame.head())
Doc ID Rep
0 Shp 1 95
1 Order 2 147
2 Order 3 282
3 Shp 4 82
4 Shp 5 746
In [204]: %timeit (frame.groupby('Rep').filter(lambda x: 'Inv' in x['Doc'].values))
1 loop, best of 3: 250 ms per loop
In [205]: %timeit (frame[frame['Rep'].isin(frame.loc[frame['Doc'] == 'Inv', 'Rep'])])
100 loops, best of 3: 17.3 ms per loop
In [206]: %%timeit
...: a = frame.query("Doc == 'Inv'")['Rep']
...: frame.query("Rep in @a")
...:
100 loops, best of 3: 14.5 ms per loop
EDIT:
编辑:
Thank you John Galtfor nice suggestion:
谢谢John Galt的好建议:
df = frame.query("Rep in %s" % frame.query("Doc == 'Inv'")['Rep'].tolist())
print (df)
Doc ID Rep
0 Order 1 101
1 Order 2 101
2 Inv 3 101
6 Order 7 103
7 Order 8 103
8 Inv 9 103
回答by Dagdoba
import pandas as pd
frame_Filtered=frame[frame['Doc'].str.contains('Inv|Order')]
print(frame_Filtered)
Output I got
我得到的输出
Doc ID Rep
0 Order 1 101
1 Order 2 101
2 Inv 3 101
3 Order 4 102
4 Order 5 102
6 Order 7 103
7 Order 8 103
8 Inv 9 103