具有布尔值和整数的数据帧的 Pandas 条件子集
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/33191738/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas conditional subset for dataframe with bool values and ints
提问by Christopher Jenkins
I have a dataframe with three series. Column A contains a group_id. Column B contains True or False. Column C contains a 1-n ranking (where n is the number of rows per group_id).
我有一个包含三个系列的数据框。A 列包含 group_id。B 列包含 True 或 False。C 列包含 1-n 排名(其中 n 是每个 group_id 的行数)。
I'd like to store a subset of this dataframe for each row that:
我想为每一行存储这个数据帧的一个子集:
1) Column C == 1
OR
2) Column B == True
The following logic copies my old dataframe row for row into the new dataframe:
以下逻辑将我的旧数据帧行复制到新数据帧中:
new_df = df[df.column_b | df.column_c == 1]
回答by Fabio Lamanna
IIUC, starting from a sample dataframe like:
IIUC,从示例数据帧开始,例如:
A,B,C
01,True,1
01,False,2
02,False,1
02,True,2
03,True,1
you can:
你可以:
df = df[(df['C']==1) | (df['B']==True)]
which returns:
返回:
A B C
0 1 True 1
2 2 False 1
3 2 True 2
4 3 True 1
回答by Zero
You've couple of methods for filtering, and performance varies based on size of your data
您有几种过滤方法,性能因数据大小而异
In [722]: df[(df['C']==1) | df['B']]
Out[722]:
A B C
0 1 True 1
2 2 False 1
3 2 True 2
4 3 True 1
In [723]: df.query('C==1 or B==True')
Out[723]:
A B C
0 1 True 1
2 2 False 1
3 2 True 2
4 3 True 1
In [724]: df[df.eval('C==1 or B==True')]
Out[724]:
A B C
0 1 True 1
2 2 False 1
3 2 True 2
4 3 True 1

