Python/Pandas 仅将字符串转换为时间
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/37801321/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python/Pandas convert string to time only
提问by edesz
I have the following Pandas dataframe in Python 2.7.
我在 Python 2.7 中有以下 Pandas 数据框。
import pandas as pd
trial_num = [1,2,3,4,5]
sail_rem_time = ['11:33:11','16:29:05','09:37:56','21:43:31','17:42:06']
dfc = pd.DataFrame(zip(*[trial_num,sail_rem_time]),columns=['Temp_Reading','Time_of_Sail'])
print dfc
The dataframe looks like this:
数据框如下所示:
Temp_Reading Time_of_Sail
1 11:33:11
2 16:29:05
3 09:37:56
4 21:43:31
5 17:42:06
This dataframe comes from a *.csv file. I use Pandas to read in the *.csv file as a Pandas dataframe. When I use print dfc.dtypes
, it shows me that the column Time_of_Sail
has a datatype object
. I would like to convert this column to datetime
datatype BUT I only want the time part - I don't want the year, month, date.
此数据框来自 *.csv 文件。我使用 Pandas 将 *.csv 文件作为 Pandas 数据框读入。当我使用时print dfc.dtypes
,它显示该列Time_of_Sail
有一个数据类型object
。我想将此列转换为datetime
数据类型,但我只想要时间部分 - 我不想要年、月、日。
I can try this:
我可以试试这个:
dfc['Time_of_Sail'] = pd.to_datetime(dfc['Time_of_Sail'])
dfc['Time_of_Sail'] = [time.time() for time in dfc['Time_of_Sail']]
but the problem is that the when I run print dfc.dtypes
it still shows that the column Time_of_Sail
is object
.
但问题是当我运行print dfc.dtypes
它时仍然显示该列Time_of_Sail
是object
.
Is there a way to convert this column into a datetime format that only has the time?
有没有办法将此列转换为只有时间的日期时间格式?
Additional Information:
附加信息:
To create the above dataframe and output, this also works:
要创建上述数据框和输出,这也适用:
import pandas as pd
trial_num = [1,2,3,4,5]
sail_rem_time = ['11:33:11','16:29:05','09:37:56','21:43:31','17:42:06']
data = [
[trial_num[0],sail_rem_time[0]],
[trial_num[1],sail_rem_time[1]],[trial_num[2],sail_rem_time[2]],
[trial_num[3],sail_rem_time[3]]
]
dfc = pd.DataFrame(data,columns=['Temp_Reading','Time_of_Sail'])
dfc['Time_of_Sail'] = pd.to_datetime(dfc['Time_of_Sail'])
dfc['Time_of_Sail'] = [time.time() for time in dfc['Time_of_Sail']]
print dfc
print dfc.dtypes
回答by Merlin
These two lines:
这两行:
dfc['Time_of_Sail'] = pd.to_datetime(dfc['Time_of_Sail'])
dfc['Time_of_Sail'] = [time.time() for time in dfc['Time_of_Sail']]
Can be written as:
可以写成:
dfc['Time_of_Sail'] = pd.to_datetime(dfc['Time_of_Sail'],format= '%H:%M:%S' ).dt.time
回答by Bhavani Prasad Basuthkar
Using to_timedelta,we can convert string to time format(timedelta64[ns]) by specifying units as second,min etc.,
使用 to_timedelta,我们可以通过将单位指定为秒、分钟等,将字符串转换为时间格式(timedelta64[ns]),
dfc['Time_of_Sail'] = pd.to_timedelta(dfc['Time_of_Sail'], unit='s')
回答by Moe Chughtai
If you just want a simple conversion you can do the below:
如果您只是想要一个简单的转换,您可以执行以下操作:
import datetime as dt
dfc.Time_of_Sail = dfc.Time_of_Sail.astype(dt.datetime)
or you could add a holder string to your time column as below, and then convert afterwards using an apply function:
或者您可以将一个持有者字符串添加到您的时间列,如下所示,然后使用应用函数进行转换:
dfc.Time_of_Sail = dfc.Time_of_Sail.apply(lambda x: '2016-01-01 ' + str(x))
dfc.Time_of_Sail = pd.to_datetime(dfc.Time_of_Sail).apply(lambda x: dt.datetime.time(x))
回答by ferengi
This seems to work:
这似乎有效:
dfc['Time_of_Sail'] = pd.to_datetime(dfc['Time_of_Sail'], format='%H:%M:%S' ).apply(pd.Timestamp)
dfc['Time_of_Sail'] = pd.to_datetime(dfc['Time_of_Sail'], format='%H:%M:%S' ).apply(pd.Timestamp)