C# 查找 List<int> 中出现次数最多的数字

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/355945/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-04 00:19:44  来源:igfitidea点击:

Find the most occurring number in a List<int>

c#linqlist

提问by

Is there a quick and nice way using linq?

有没有一种使用 linq 的快速而好的方法?

采纳答案by Marc Gravell

How about:

怎么样:

var most = list.GroupBy(i=>i).OrderByDescending(grp=>grp.Count())
      .Select(grp=>grp.Key).First();

or in query syntax:

或在查询语法中:

var most = (from i in list
            group i by i into grp
            orderby grp.Count() descending
            select grp.Key).First();

Of course, if you will use this repeatedly, you could add an extension method:

当然,如果你会重复使用这个,你可以添加一个扩展方法:

public static T MostCommon<T>(this IEnumerable<T> list)
{
    return ... // previous code
}

Then you can use:

然后你可以使用:

var most = list.MostCommon();

回答by Mike Dunlavey

Not sure about the lambda expressions, but I would

不确定 lambda 表达式,但我会

  1. Sort the list [O(n log n)]

  2. Scan the list [O(n)] finding the longest run-length.

  3. Scan it again [O(n)] reporting each number having that run-length.

  1. 对列表进行排序 [O(n log n)]

  2. 扫描列表 [O(n)] 找到最长的游程长度。

  3. 再次扫描 [O(n)] 报告每个具有该游程长度的数字。

This is because there could be more than one most-occurring number.

这是因为出现次数最多的数字可能不止一个。

回答by Amy B

Someone asked for a solution where there's ties. Here's a stab at that:

有人要求解决有联系的解决方案。这是一个尝试:

int indicator = 0

var result =
  list.GroupBy(i => i)
    .Select(g => new {i = g.Key, count = g.Count()}
    .OrderByDescending(x => x.count)
    .TakeWhile(x =>
    {
      if (x.count == indicator || indicator == 0)
      {
        indicator = x.count;
        return true;
      }
      return false;
    })
    .Select(x => x.i);

回答by nawfal

Taken from my answer here:

摘自我在这里的回答:

public static IEnumerable<T> Mode<T>(this IEnumerable<T> input)
{            
    var dict = input.ToLookup(x => x);
    if (dict.Count == 0)
        return Enumerable.Empty<T>();
    var maxCount = dict.Max(x => x.Count());
    return dict.Where(x => x.Count() == maxCount).Select(x => x.Key);
}

var modes = { }.Mode().ToArray(); //returns { }
var modes = { 1, 2, 3 }.Mode().ToArray(); //returns { 1, 2, 3 }
var modes = { 1, 1, 2, 3 }.Mode().ToArray(); //returns { 1 }
var modes = { 1, 2, 3, 1, 2 }.Mode().ToArray(); //returns { 1, 2 }

I went for a performance test between the above approach and David B'sTakeWhile.

我在上述方法和David B 的TakeWhile.

source = { }, iterations = 1000000
mine - 300 ms, David's - 930 ms

source = { 1 }, iterations = 1000000
mine - 1070 ms, David's - 1560 ms

source = 100+ ints with 2 duplicates, iterations = 10000
mine - 300 ms, David's - 500 ms

source = 10000 random ints with about 100+ duplicates, iterations = 1000
mine - 1280 ms, David's - 1400 ms

源 = { },迭代 = 1000000
我的 - 300 毫秒,大卫的 - 930 毫秒

源 = { 1 },迭代 = 1000000
我的 - 1070 毫秒,大卫的 - 1560 毫秒

源 = 100+ 整数,有 2 个重复,迭代 = 10000
我的 - 300 毫秒,大卫的 - 500 毫秒

源 = 10000 个随机整数,大约有 100 多个重复,迭代 = 1000
我的 - 1280 毫秒,大卫的 - 1400 毫秒

回答by Jodrell

Here is another answer, which seems to be fast. I think Nawfal's answeris generally faster but this might shade it on long sequences.

这是另一个答案,似乎很快。我认为Nawfal 的答案通常更快,但这可能会影响长序列。

public static IEnumerable<T> Mode<T>(
    this IEnumerable<T> source,
    IEqualityComparer<T> comparer = null)
{
    var counts = source.GroupBy(t => t, comparer)
        .Select(g => new { g.Key, Count = g.Count() })
        .ToList();

    if (counts.Count == 0)
    {
        return Enumerable.Empty<T>();
    }

    var maxes = new List<int>(5);
    int maxCount = 1;

    for (var i = 0; i < counts.Count; i++)
    {
        if (counts[i].Count < maxCount)
        {
            continue;
        }

        if (counts[i].Count > maxCount)
        {
            maxes.Clear();
            maxCount = counts[i].Count;
        }

        maxes.Add(i);
    }

    return maxes.Select(i => counts[i].Key);
}