pandas 熊猫数据框中列表中的元素计数

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/48707117/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 05:09:03  来源:igfitidea点击:

Count of elements in lists within pandas data frame

pythonpandas

提问by Gaurav Taneja

I need to get the frequency of each element in a list when the list is in a pandas data frame columns

当列表位于Pandas数据框列中时,我需要获取列表中每个元素的频率

In data:

在数据中:

din=pd.DataFrame({'x':[['a','b','c'],['a','e','d', 'c']]})`

              x
0     [a, b, c]
1  [a, e, d, c]

Desired Output:

期望输出:

   f  x
0  2  a
1  1  b
2  2  c
3  1  d
4  1  e

I can expand the list into rows and then perform a group by but this data could be large ( million plus records ) and was wondering if there is a more efficient/direct way.

我可以将列表扩展为行,然后执行分组,但此数据可能很大(数百万条记录),并且想知道是否有更有效/直接的方法。

Thanks

谢谢

回答by jezrael

First flattenvalues of lists and then count by value_countsor sizeor Counter:

首先展平lists 的值,然后按value_countsorsize或 or计数Counter

a = pd.Series([item for sublist in din.x for item in sublist])

Or:

或者:

a = pd.Series(np.concatenate(din.x))


df = a.value_counts().sort_index().rename_axis('x').reset_index(name='f')

Or:

或者:

df = a.groupby(a).size().rename_axis('x').reset_index(name='f')


from collections import Counter
from  itertools import chain

df = pd.Series(Counter(chain(*din.x))).sort_index().rename_axis('x').reset_index(name='f')

print (df)
   x  f
0  a  2
1  b  1
2  c  2
3  d  1
4  e  1

回答by tmsss

You can also have an one liner like this:

你也可以有这样的单衬:

df = pd.Series(sum([item for item in din.x], [])).value_counts()