C语言 C中快速高效的最小二乘拟合算法?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/5083465/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-02 07:51:35  来源:igfitidea点击:

fast & efficient least squares fit algorithm in C?

calgorithmleast-squares

提问by O_O

I am trying to implement a linear least squares fit onto 2 arrays of data: time vs amplitude. The only technique I know so far is to test all of the possible m and b points in (y = m*x+b) and then find out which combination fits my data best so that it has the least error. However, I think iterating so many combinations is sometimes useless because it tests out everything. Are there any techniques to speed up the process that I don't know about? Thanks.

我正在尝试对 2 个数据数组实施线性最小二乘拟合:时间与幅度。到目前为止,我知道的唯一技术是测试 (y = m*x+b) 中所有可能的 m 和 b 点,然后找出哪种组合最适合我的数据,从而使其误差最小。但是,我认为迭代如此多的组合有时是无用的,因为它测试了所有内容。是否有任何技术可以加快我不知道的过程?谢谢。

采纳答案by Jeremiah Willcock

There are efficient algorithms for least-squares fitting; see Wikipediafor details. There are also libraries that implement the algorithms for you, likely more efficiently than a naive implementation would do; the GNU Scientific Libraryis one example, but there are others under more lenient licenses as well.

有有效的最小二乘拟合算法;有关详细信息,请参阅维基百科。还有一些库可以为您实现算法,可能比简单的实现更有效;在GNU科学图书馆就是一个例子,但也有其他人在更宽松的许可证也是如此。

回答by Mark Lakata

Try this code. It fits y = mx + bto your (x,y) data.

试试这个代码。它适合y = mx + b您的 (x,y) 数据。

The arguments to linregare

的论据linreg

linreg(int n, REAL x[], REAL y[], REAL* b, REAL* m, REAL* r)

n = number of data points
x,y  = arrays of data
*b = output intercept
*m  = output slope
*r = output correlation coefficient (can be NULL if you don't want it)

The return value is 0 on success, !=0 on failure.

成功时返回值为 0,失败时返回值 !=0。

Here's the code

这是代码

#include "linreg.h"
#include <stdlib.h>
#include <math.h>                           /* math functions */

//#define REAL float
#define REAL double


inline static REAL sqr(REAL x) {
    return x*x;
}


int linreg(int n, const REAL x[], const REAL y[], REAL* m, REAL* b, REAL* r){
    REAL   sumx = 0.0;                      /* sum of x     */
    REAL   sumx2 = 0.0;                     /* sum of x**2  */
    REAL   sumxy = 0.0;                     /* sum of x * y */
    REAL   sumy = 0.0;                      /* sum of y     */
    REAL   sumy2 = 0.0;                     /* sum of y**2  */

    for (int i=0;i<n;i++){ 
        sumx  += x[i];       
        sumx2 += sqr(x[i]);  
        sumxy += x[i] * y[i];
        sumy  += y[i];      
        sumy2 += sqr(y[i]); 
    } 

    REAL denom = (n * sumx2 - sqr(sumx));
    if (denom == 0) {
        // singular matrix. can't solve the problem.
        *m = 0;
        *b = 0;
        if (r) *r = 0;
            return 1;
    }

    *m = (n * sumxy  -  sumx * sumy) / denom;
    *b = (sumy * sumx2  -  sumx * sumxy) / denom;
    if (r!=NULL) {
        *r = (sumxy - sumx * sumy / n) /    /* compute correlation coeff */
              sqrt((sumx2 - sqr(sumx)/n) *
              (sumy2 - sqr(sumy)/n));
    }

    return 0; 
}

Example

例子

You can run this example online.

您可以在线运行此示例

int main()
{
    int n = 6;
    REAL x[6]= {1, 2, 4,  5,  10, 20};
    REAL y[6]= {4, 6, 12, 15, 34, 68};

    REAL m,b,r;
    linreg(n,x,y,&m,&b,&r);
    printf("m=%g b=%g r=%g\n",m,b,r);
    return 0;
}

Here is the output

这是输出

m=3.43651 b=-0.888889 r=0.999192    

Here is the Excel plot and linear fit (for verification).

这是 Excel 图和线性拟合(用于验证)。

All values agree exactly with the C code above (note C code returns rwhile Excel returns R**2).

所有值都与上面的 C 代码完全一致(注意 C 代码返回r而 Excel 返回R**2)。

Excel version of fit

适合的 Excel 版本

回答by Ziezi

From Numerical Recipes: The Art of Scientific Computingin (15.2) Fitting Data to a Straight Line:

数值食谱:科学计算的艺术将数据拟合直线(15.2)

Linear Regression:

线性回归:

Consider the problem of fitting a set of N data points (xi, yi) to a straight-line model:

考虑将一组 N 个数据点 (x i, y i)拟合到直线模型的问题:

enter image description here

在此处输入图片说明

Assume that the uncertainty: sigmaiassociated with each yiand that the xi's (values of the dependent variable) are known exactly. To measure how well the model agrees with the data, we use the chi-square function, which in this case is:

假设不确定性:西格玛与每个y相关联的和使得x的(因变量的值)被精确地已知的。为了衡量模型与数据的吻合程度,我们使用卡方函数,在本例中为:

enter image description here

在此处输入图片说明

The above equation is minimized to determine a and b. This is done by finding the derivative of the above equation with respect to a and b, equate them to zero and solve for a and b. Then we estimate the probable uncertainties in the estimates of a and b, since obviously the measurement errors in the data must introduce some uncertainty in the determination of those parameters. Additionally, we must estimate the goodness-of-fit of the data to the model. Absent this estimate, we have not the slightest indication that the parameters a and b in the model have any meaning at all.

上面的等式被最小化以确定a和b。这是通过找到上述方程关于 a 和 b 的导数,将它们等于零并求解 a 和 b 来完成的。然后我们估计 a 和 b 估计中可能的不确定性,因为数据中的测量误差显然必须在确定这些参数时引入一些不确定性。此外,我们必须估计数据与模型的拟合优度。如果没有这个估计,我们就没有丝毫迹象表明模型中的参数 a 和 b 有任何意义。

The below struct performs the mentioned calculations:

下面的结构执行上述计算:

struct Fitab {
// Object for fitting a straight line y = a + b*x to a set of 
// points (xi, yi), with or without available
// errors sigma i . Call one of the two constructors to calculate the fit.
// The answers are then available as the variables:
// a, b, siga, sigb, chi2, and either q or sigdat.
int ndata;
double a, b, siga, sigb, chi2, q, sigdat; // Answers.
vector<double> &x, &y, &sig;
// Constructor. 
Fitab(vector<double> &xx, vector<double> &yy, vector<double> &ssig)
    : ndata(xx.size()), x(xx), y(yy), sig(ssig), chi2(0.), q(1.), sigdat(0.) 
  {
    // Given a set of data points x[0..ndata-1], y[0..ndata-1] 
    // with individual standard deviations sig[0..ndata-1], 
    // sets a,b and their respective probable uncertainties
    // siga and sigb, the chi-square: chi2, and the goodness-of-fit
    //  probability: q  
    Gamma gam;
    int i;
    double ss=0., sx=0., sy=0., st2=0., t, wt, sxoss; b=0.0; 

    for (i=0;i < ndata; i++) { // Accumulate sums ...
        wt = 1.0 / SQR(sig[i]); //...with weights
        ss += wt;
        sx += x[i]*wt;
        sy += y[i]*wt;
    }
    sxoss = sx/ss;

    for (i=0; i < ndata; i++) {
        t = (x[i]-sxoss) / sig[i];
        st2 += t*t;
        b += t*y[i]/sig[i];
    }
    b /= st2; // Solve for a, b, sigma-a, and simga-b.
    a = (sy-sx*b) / ss;
    siga = sqrt((1.0+sx*sx/(ss*st2))/ss);
    sigb = sqrt(1.0/st2); // Calculate chi2.
    for (i=0;i<ndata;i++) chi2 += SQR((y[i]-a-b*x[i])/sig[i]);

    if (ndata>2) q=gam.gammq(0.5*(ndata-2),0.5*chi2); // goodness of fit
  }
// Constructor. 
Fitab(vector<double> &xx, vector<double> &yy)
    : ndata(xx.size()), x(xx), y(yy), sig(xx), chi2(0.), q(1.), sigdat(0.) 
  {
    // As above, but without known errors (sig is not used). 
    // The uncertainties siga and sigb are estimated by assuming
    // equal errors for all points, and that a straight line is
    // a good fit. q is returned as 1.0, the normalization of chi2
    // is to unit standard deviation on all points, and sigdat
    // is set to the estimated error of each point.
    int i;
    double ss,sx=0.,sy=0.,st2=0.,t,sxoss;
    b=0.0; // Accumulate sums ...
    for (i=0; i < ndata; i++) {
        sx += x[i]; // ...without weights.
        sy += y[i];
    }
    ss = ndata;
    sxoss = sx/ss;
    for (i=0;i < ndata; i++) {
        t = x[i]-sxoss;
        st2 += t*t;
        b += t*y[i];
    }
    b /= st2;  // Solve for a, b, sigma-a, and sigma-b.
    a = (sy-sx*b)/ss;
    siga=sqrt((1.0+sx*sx/(ss*st2))/ss);
    sigb=sqrt(1.0/st2); // Calculate chi2.
    for (i=0;i<ndata;i++) chi2 += SQR(y[i]-a-b*x[i]);

    if (ndata > 2) sigdat=sqrt(chi2/(ndata-2)); 
    // For unweighted data evaluate typical
    // sig using chi2, and adjust
    // the standard deviations.
    siga *= sigdat;
    sigb *= sigdat;
  }
};  

where struct Gamma:

其中struct Gamma

struct Gamma : Gauleg18 {  
// Object for incomplete gamma function. 
// Gauleg18 provides coefficients for Gauss-Legendre quadrature.
static const Int ASWITCH=100; When to switch to quadrature method.
static const double EPS;   // See end of struct for initializations.
static const double FPMIN; 
double gln;
double gammp(const double a, const double x) {
    // Returns the incomplete gamma function P(a,x)
    if (x < 0.0 || a <= 0.0) throw("bad args in gammp");
    if (x == 0.0) return 0.0;
    else if ((Int)a >= ASWITCH) return gammpapprox(a,x,1); // Quadrature.
    else if (x < a+1.0) return gser(a,x); // Use the series representation.
    else return 1.0-gcf(a,x); // Use the continued fraction representation.
}

double gammq(const double a, const double x) {
    // Returns the incomplete gamma function Q(a,x) = 1 - P(a,x)
    if (x < 0.0 || a <= 0.0) throw("bad args in gammq");
    if (x == 0.0) return 1.0;
    else if ((Int)a >= ASWITCH) return gammpapprox(a,x,0); // Quadrature.
    else if (x < a+1.0) return 1.0-gser(a,x); // Use the series representation.
    else return gcf(a,x); // Use the continued fraction representation.
}
double gser(const Doub a, const Doub x) {
    // Returns the incomplete gamma function P(a,x) evaluated by its series representation.
    // Also sets ln (gamma) as gln. User should not call directly.
    double sum,del,ap;
    gln=gammln(a);
    ap=a;
    del=sum=1.0/a;
    for (;;) {
        ++ap;
        del *= x/ap;
        sum += del;
        if (fabs(del) < fabs(sum)*EPS) {
            return sum*exp(-x+a*log(x)-gln);
        }
    }
}
double gcf(const Doub a, const Doub x) {
    // Returns the incomplete gamma function Q(a, x) evaluated 
    // by its continued fraction representation. 
    // Also sets ln (gamma) as gln. User should not call directly.
    int i;
    double an,b,c,d,del,h;
    gln=gammln(a);
    b=x+1.0-a; // Set up for evaluating continued fraction
               // by modified Lentz's method with with b0 = 0.
    c=1.0/FPMIN;
    d=1.0/b;
    h=d;
    for (i=1;;i++) { 
        // Iterate to convergence.
        an = -i*(i-a);
        b += 2.0;
        d=an*d+b;

        if (fabs(d) < FPMIN) d=FPMIN;
        c=b+an/c;
        if (fabs(c) < FPMIN) c=FPMIN;
        d=1.0/d;
        del=d*c;
        h *= del;
        if (fabs(del-1.0) <= EPS) break;
    }
    return exp(-x+a*log(x)-gln)*h; Put factors in front.
}
double gammpapprox(double a, double x, int psig) {
    // Incomplete gamma by quadrature. Returns P(a,x) or Q(a, x), 
    // when psig is 1 or 0, respectively. User should not call directly.
    int j;
    double xu,t,sum,ans;
    double a1 = a-1.0, lna1 = log(a1), sqrta1 = sqrt(a1);
    gln = gammln(a);
    // Set how far to integrate into the tail:
    if (x > a1) xu = MAX(a1 + 11.5*sqrta1, x + 6.0*sqrta1);
    else xu = MAX(0.,MIN(a1 - 7.5*sqrta1, x - 5.0*sqrta1));
    sum = 0;
    for (j=0;j<ngau;j++) { // Gauss-Legendre.
        t = x + (xu-x)*y[j];
        sum += w[j]*exp(-(t-a1)+a1*(log(t)-lna1));
    }
    ans = sum*(xu-x)*exp(a1*(lna1-1.)-gln);
    return (psig?(ans>0.0? 1.0-ans:-ans):(ans>=0.0? ans:1.0+ans));
}
double invgammp(Doub p, Doub a);
// Inverse function on x of P(a,x) .
};
const Doub Gamma::EPS = numeric_limits<Doub>::epsilon();
const Doub Gamma::FPMIN = numeric_limits<Doub>::min()/EPS

and stuct Gauleg18:

stuct Gauleg18

struct Gauleg18 {
// Abscissas and weights for Gauss-Legendre quadrature.
   static const Int ngau = 18;
   static const Doub y[18];
   static const Doub w[18];
};

const Doub Gauleg18::y[18] = {0.0021695375159141994,
   0.011413521097787704,0.027972308950302116,0.051727015600492421,
   0.082502225484340941, 0.12007019910960293,0.16415283300752470,
   0.21442376986779355, 0.27051082840644336, 0.33199876341447887,
   0.39843234186401943, 0.46931971407375483, 0.54413605556657973,
   0.62232745288031077, 0.70331500465597174, 0.78649910768313447,
   0.87126389619061517, 0.95698180152629142};

const Doub Gauleg18::w[18] = {0.0055657196642445571,
   0.012915947284065419,0.020181515297735382,0.027298621498568734,
   0.034213810770299537,0.040875750923643261,0.047235083490265582,
   0.053244713977759692,0.058860144245324798,0.064039797355015485
   0.068745323835736408,0.072941885005653087,0.076598410645870640,
   0.079687828912071670,0.082187266704339706,0.084078218979661945,
   0.085346685739338721,0.085983275670394821};

and, finally fuinction Gamma::invgamp():

并且,最后功能Gamma::invgamp()

double Gamma::invgammp(double p, double a) { 
    // Returns x such that P(a,x) =  p for an argument p between 0 and 1.
    int j;
    double x,err,t,u,pp,lna1,afac,a1=a-1;
    const double EPS=1.e-8; // Accuracy is the square of EPS.
    gln=gammln(a);
    if (a <= 0.) throw("a must be pos in invgammap");
    if (p >= 1.) return MAX(100.,a + 100.*sqrt(a));
    if (p <= 0.) return 0.0;
    if (a > 1.) {   
        lna1=log(a1);
        afac = exp(a1*(lna1-1.)-gln);
        pp = (p < 0.5)? p : 1. - p;
        t = sqrt(-2.*log(pp));
        x = (2.30753+t*0.27061)/(1.+t*(0.99229+t*0.04481)) - t;
        if (p < 0.5) x = -x;
        x = MAX(1.e-3,a*pow(1.-1./(9.*a)-x/(3.*sqrt(a)),3));
   } else {  
        t = 1.0 - a*(0.253+a*0.12); and (6.2.9).
        if (p < t) x = pow(p/t,1./a);
        else x = 1.-log(1.-(p-t)/(1.-t));
   }
   for (j=0;j<12;j++) {
        if (x <= 0.0) return 0.0; // x too small to compute accurately.
        err = gammp(a,x) - p;
        if (a > 1.) t = afac*exp(-(x-a1)+a1*(log(x)-lna1));
        else t = exp(-x+a1*log(x)-gln);
        u = err/t;
        // Halley's method.
        x -= (t = u/(1.-0.5*MIN(1.,u*((a-1.)/x - 1)))); 
        // Halve old value if x tries to go negative.
        if (x <= 0.) x = 0.5*(x + t); 
        if (fabs(t) < EPS*x ) break;
    }
    return x;
}

回答by Hyman

The original example above worked well for me with slope and offset but I had a hard time with the corr coef. Maybe I don't have my parenthesis working the same as the assumed precedence? Anyway, with some help of other web pages I finally got values that match the linear trend-line in Excel. Thought I would share my code using Mark Lakata's variable names. Hope this helps.

上面的原始示例在斜率和偏移方面对我来说效果很好,但是我在使用 corr coef 时遇到了困难。也许我的括号与假定的优先级不同?无论如何,在其他网页的帮助下,我终于得到了与 Excel 中的线性趋势线相匹配的值。以为我会使用 Mark Lakata 的变量名分享我的代码。希望这可以帮助。

double slope = ((n * sumxy) - (sumx * sumy )) / denom;
double intercept = ((sumy * sumx2) - (sumx * sumxy)) / denom;
double term1 = ((n * sumxy) - (sumx * sumy));
double term2 = ((n * sumx2) - (sumx * sumx));
double term3 = ((n * sumy2) - (sumy * sumy));
double term23 = (term2 * term3);
double r2 = 1.0;
if (fabs(term23) > MIN_DOUBLE)  // Define MIN_DOUBLE somewhere as 1e-9 or similar
    r2 = (term1 * term1) / term23;

回答by Throwback1986

Look at Section 1 of this paper. This section expresses a 2D linear regression as a matrix multiplication exercise. As long as your data is well-behaved, this technique should permit you to develop a quick least squares fit.

请看本文的第 1 节。本节将二维线性回归表示为矩阵乘法练习。只要您的数据表现良好,这种技术就应该允许您开发快速的最小二乘拟合。

Depending on the size of your data, it might be worthwhile to algebraically reduce the matrix multiplication to simple set of equations, thereby avoiding the need to write a matmult() function. (Be forewarned, this is completely impractical for more than 4 or 5 data points!)

根据数据的大小,将矩阵乘法代数化为一组简单的方程可能是值得的,从而避免编写 matmult() 函数的需要。(预先警告,这对于超过 4 或 5 个数据点是完全不切实际的!)

回答by Default picture

The fastest, most efficient way to solve least squares, as far as I am aware, is to subtract (the gradient)/(the 2nd order gradient) from your parameter vector. (2nd order gradient = i.e. the diagonal of the Hessian.)

据我所知,解决最小二乘法的最快、最有效的方法是从参数向量中减去(梯度)/(二阶梯度)。(二阶梯度 = 即 Hessian 的对角线。)

Here is the intuition:

这是直觉:

Let's say you want to optimize least squares over a single parameter. This is equivalent to finding the vertex of a parabola. Then, for any random initial parameter, x0, the vertex of the loss function is located at x0- f(1)/ f(2). That's because adding - f(1)/ f(2)to x will always zero out the derivative, f(1).

假设您想针对单个参数优化最小二乘法。这相当于找到抛物线的顶点。然后,对于任何随机初始参数 x 0,损失函数的顶点位于 x 0- f (1)/ f (2)。这是因为将 - f (1)/ f (2) 添加到 x 将始终将导数 f (1)归零。

Side note: Implementing this in Tensorflow, the solution appeared at w0- f(1)/ f(2)/ (number of weights), but I'm not sure if that's due to Tensorflow or if it's due to something else..

旁注:在 Tensorflow 中实现这一点,解决方案出现在 w 0- f (1)/ f (2)/(权重数),但我不确定这是由于 Tensorflow 还是其他原因。 .

回答by nisennenmondai

as an assignment I had to code in C a simple linear regression using RMSE loss function. The program is dynamic and you can enter your own values and choose your own loss function which is for now limited to Root Mean Square Error. But first here are the algorithms I used:

作为作业,我必须使用 RMSE 损失函数在 C 中编写一个简单的线性回归。该程序是动态的,您可以输入自己的值并选择自己的损失函数,目前仅限于均方根误差。但首先这里是我使用的算法:

enter image description hereenter image description hereenter image description hereenter image description here

在此处输入图片说明在此处输入图片说明在此处输入图片说明在此处输入图片说明

now the code... you need gnuplot to display the chart, sudo apt install gnuplot

现在代码......你需要gnuplot来显示图表,sudo apt install gnuplot

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sys/types.h>

#define BUFFSIZE 64
#define MAXSIZE 100

static double vector_x[MAXSIZE] = {0};
static double vector_y[MAXSIZE] = {0};
static double vector_predict[MAXSIZE] = {0};

static double max_x;
static double max_y;
static double mean_x;
static double mean_y;
static double teta_0_intercept;
static double teta_1_grad;
static double RMSE;
static double r_square;
static double prediction;

static char intercept[BUFFSIZE];
static char grad[BUFFSIZE];
static char xrange[BUFFSIZE];
static char yrange[BUFFSIZE];
static char lossname_RMSE[BUFFSIZE] = "Simple Linear Regression using RMSE'";

static char cmd_gnu_0[BUFFSIZE] = "set title '";
static char cmd_gnu_1[BUFFSIZE] = "intercept = ";
static char cmd_gnu_2[BUFFSIZE] = "grad = ";
static char cmd_gnu_3[BUFFSIZE] = "set xrange [0:";
static char cmd_gnu_4[BUFFSIZE] = "set yrange [0:";
static char cmd_gnu_5[BUFFSIZE] = "f(x) = (grad * x) + intercept";
static char cmd_gnu_6[BUFFSIZE] = "plot f(x), 'data.temp' with points pointtype 7";

static char const *commands_gnuplot[] = {
    cmd_gnu_0,
    cmd_gnu_1,
    cmd_gnu_2,
    cmd_gnu_3,
    cmd_gnu_4,
    cmd_gnu_5,
    cmd_gnu_6,
};

static size_t size;

static void user_input()
{
    printf("Enter x,y vector size, MAX = 100\n");
    scanf("%lu", &size);
    if (size > MAXSIZE) {
        printf("Wrong input size is too big\n");
        user_input();
    }
    printf("vector's size is %lu\n", size);

    size_t i;
    for (i = 0; i < size; i++) {
        printf("Enter vector_x[%ld] values\n", i);
        scanf("%lf", &vector_x[i]);
    }

    for (i = 0; i < size; i++) {
        printf("Enter vector_y[%ld] values\n", i);
        scanf("%lf", &vector_y[i]);
    }
}

static void display_vector()
{
    size_t i;
    for (i = 0; i < size; i++){
        printf("vector_x[%lu] = %lf\t", i, vector_x[i]);
        printf("vector_y[%lu] = %lf\n", i, vector_y[i]);
    }
}

static void concatenate(char p[], char q[]) {
   int c;
   int d;
   c = 0;

   while (p[c] != '##代码##') {
      c++;
   }
   d = 0;

   while (q[d] != '##代码##') {
      p[c] = q[d];
      d++;
      c++;
   }
   p[c] = '##代码##';
}

static void compute_mean_x_y()
{
    size_t i;
    double tmp_x = 0.0;
    double tmp_y = 0.0;
    for (i = 0; i < size; i++) {
        tmp_x += vector_x[i];
        tmp_y += vector_y[i];
    }

    mean_x = tmp_x / size;
    mean_y = tmp_y / size;

    printf("mean_x = %lf\n", mean_x);
    printf("mean_y = %lf\n", mean_y);
}

static void compute_teta_1_grad()
{
    double numerator = 0.0;
    double denominator = 0.0;
    double tmp1 = 0.0;
    double tmp2 = 0.0;
    size_t i;

    for (i = 0; i < size; i++) {
        numerator += (vector_x[i] - mean_x) * (vector_y[i] - mean_y);
    }

    for (i = 0; i < size; i++) {
        tmp1 = vector_x[i] - mean_x;
        tmp2 = tmp1 * tmp1;
        denominator += tmp2;
    }

    teta_1_grad = numerator / denominator;
    printf("teta_1_grad = %lf\n", teta_1_grad);
}

static void compute_teta_0_intercept()
{
    teta_0_intercept = mean_y - (teta_1_grad * mean_x);
    printf("teta_0_intercept = %lf\n", teta_0_intercept);
}

static void compute_prediction()
{
    size_t i;
    for (i = 0; i < size; i++) {
        vector_predict[i] = teta_0_intercept + (teta_1_grad * vector_x[i]);
        printf("y^[%ld] = %lf\n", i, vector_predict[i]);
    }
    printf("\n");
}

static void compute_RMSE()
{
    compute_prediction();
    double error = 0;
    size_t i;
    for (i = 0; i < size; i++) {
        error = (vector_predict[i] - vector_y[i]) * (vector_predict[i] - vector_y[i]);
        printf("error y^[%ld] =  %lf\n", i, error);
        RMSE += error;
    }
    /* mean */
    RMSE = RMSE / size;
    /* square root mean */
    RMSE = sqrt(RMSE);
    printf("\nRMSE = %lf\n", RMSE);
}

static void compute_loss_function()
{
    int input = 0;
    printf("Which loss function do you want to use?\n");
    printf(" 1 - RMSE\n");
    scanf("%d", &input);
    switch(input) {
        case 1:
            concatenate(cmd_gnu_0, lossname_RMSE);
            compute_RMSE();
            printf("\n");
            break;
        default:
            printf("Wrong input try again\n");
            compute_loss_function(size);
    }
}

static void compute_r_square(size_t size)
{
    double num_err = 0.0;
    double den_err = 0.0;
    size_t i;

    for (i = 0; i < size; i++) {
        num_err += (vector_y[i] - vector_predict[i]) * (vector_y[i] - vector_predict[i]);
        den_err += (vector_y[i] - mean_y) * (vector_y[i] - mean_y);
    }
    r_square = 1 - (num_err/den_err);
    printf("R_square = %lf\n", r_square);
}

static void compute_predict_for_x()
{
    double x = 0.0;
    printf("Please enter x value\n");
    scanf("%lf", &x);
    prediction = teta_0_intercept + (teta_1_grad * x);
    printf("y^ if x = %lf -> %lf\n",x, prediction);
}

static void compute_max_x_y()
{
    size_t i;
    double tmp1= 0.0;
    double tmp2= 0.0;

    for (i = 0; i < size; i++) {
        if (vector_x[i] > tmp1) {
            tmp1 = vector_x[i];
            max_x = vector_x[i];

        }
        if (vector_y[i] > tmp2) {
            tmp2 = vector_y[i];
            max_y = vector_y[i];
        }
    }
    printf("vector_x max value %lf\n", max_x);
    printf("vector_y max value %lf\n", max_y);
}

static void display_model_line()
{
    sprintf(intercept, "%0.7lf", teta_0_intercept);
    sprintf(grad, "%0.7lf", teta_1_grad);
    sprintf(xrange, "%0.7lf", max_x + 1);
    sprintf(yrange, "%0.7lf", max_y + 1);

    concatenate(cmd_gnu_1, intercept);
    concatenate(cmd_gnu_2, grad);
    concatenate(cmd_gnu_3, xrange);
    concatenate(cmd_gnu_3, "]");
    concatenate(cmd_gnu_4, yrange);
    concatenate(cmd_gnu_4, "]");

    printf("grad = %s\n", grad);
    printf("intercept = %s\n", intercept);
    printf("xrange = %s\n", xrange);
    printf("yrange = %s\n", yrange);

    printf("cmd_gnu_0: %s\n", cmd_gnu_0);
    printf("cmd_gnu_1: %s\n", cmd_gnu_1);
    printf("cmd_gnu_2: %s\n", cmd_gnu_2);
    printf("cmd_gnu_3: %s\n", cmd_gnu_3);
    printf("cmd_gnu_4: %s\n", cmd_gnu_4);
    printf("cmd_gnu_5: %s\n", cmd_gnu_5);
    printf("cmd_gnu_6: %s\n", cmd_gnu_6);

    /* print plot */
    FILE *gnuplot_pipe = (FILE*)popen("gnuplot -persistent", "w");
    FILE *temp = (FILE*)fopen("data.temp", "w");

    /* create data.temp */
    size_t i;
    for (i = 0; i < size; i++)
    {
        fprintf(temp, "%f %f \n", vector_x[i], vector_y[i]);
    }

    /* display gnuplot */
    for (i = 0; i < 7; i++)
    {
        fprintf(gnuplot_pipe, "%s \n", commands_gnuplot[i]);
    }
}

int main(void)
{
    printf("===========================================\n");
    printf("INPUT DATA\n");
    printf("===========================================\n");
    user_input();
    display_vector();
    printf("\n");

    printf("===========================================\n");
    printf("COMPUTE MEAN X:Y, TETA_1 TETA_0\n");
    printf("===========================================\n");
    compute_mean_x_y();
    compute_max_x_y();
    compute_teta_1_grad();
    compute_teta_0_intercept();
    printf("\n");

    printf("===========================================\n");
    printf("COMPUTE LOSS FUNCTION\n");
    printf("===========================================\n");
    compute_loss_function();

    printf("===========================================\n");
    printf("COMPUTE R_square\n");
    printf("===========================================\n");
    compute_r_square(size);
    printf("\n");

    printf("===========================================\n");
    printf("COMPUTE y^ according to x\n");
    printf("===========================================\n");
    compute_predict_for_x();
    printf("\n");

    printf("===========================================\n");
    printf("DISPLAY LINEAR REGRESSION\n");
    printf("===========================================\n");
    display_model_line();
    printf("\n");

    return 0;
}