Python 从 pyspark 中的数据帧构建 StructType
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/36026070/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Building a StructType from a dataframe in pyspark
提问by learning
I am new spark and python and facing this difficulty of building a schema from a metadata file that can be applied to my data file. Scenario: Metadata File for the Data file(csv format), contains the columns and their types: for example:
我是新的 spark 和 python,面临着从可以应用于我的数据文件的元数据文件构建模式的困难。场景:数据文件的元数据文件(csv 格式),包含列及其类型:例如:
id,int,10,"","",id,"","",TRUE,"",0
created_at,timestamp,"","","",created_at,"","",FALSE,"",0
I have successfully converted this to a dataframe that looks like:
我已成功将其转换为如下所示的数据框:
+--------------------+---------------+
| name| type|
+--------------------+---------------+
| id| IntegerType()|
| created_at|TimestampType()|
| updated_at| StringType()|
But when I try to convert this to a StructField format using this
但是当我尝试使用它将其转换为 StructField 格式时
fields = schemaLoansNew.map(lambda l:([StructField(l.name, l.type, 'true')]))
OR
或者
schemaList = schemaLoansNew.map(lambda l: ("StructField(" + l.name + "," + l.type + ",true)")).collect()
And then later convert it to StructType, using
然后将其转换为 StructType,使用
schemaFinal = StructType(schemaList)
I get the following error:
我收到以下错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/mapr/spark/spark-1.4.1/python/pyspark/sql/types.py", line 372, in __init__
assert all(isinstance(f, DataType) for f in fields), "fields should be a list of DataType"
AssertionError: fields should be a list of DataType
I am stuck on this due to my lack of knowledge on Data Frames, can you please advise, how to proceed on this. once I have schema ready I want to use createDataFrame to apply to my data File. This process has to be done for many tables so I do not want to hardcode the types rather use the metadata file to build the schema and then apply to the RDD.
由于我对数据帧缺乏了解,我被困在这个问题上,请您指教,如何继续。一旦我准备好架构,我想使用 createDataFrame 应用于我的数据文件。必须对许多表执行此过程,因此我不想对类型进行硬编码,而是使用元数据文件来构建模式,然后应用于 RDD。
Thanks in advance.
提前致谢。
回答by zero323
Fields have argument have to be a list of DataType
objects. This:
字段的参数必须是DataType
对象列表。这个:
.map(lambda l:([StructField(l.name, l.type, 'true')]))
generates after collect
a list
of lists
of tuples
(Rows
) of DataType
(list[list[tuple[DataType]]]
) not to mention that nullable
argument should be boolean not a string.
生成后collect
一个list
的lists
的tuples
(Rows
的)DataType
(list[list[tuple[DataType]]]
)更不用说nullable
参数应该是布尔值不是字符串。
Your second attempt:
你的第二次尝试:
.map(lambda l: ("StructField(" + l.name + "," + l.type + ",true)")).
generates after collect
a list
of str
objects.
后,生成collect
一个list
的str
对象。
Correct schema for the record you've shown should look more or less like this:
您显示的记录的正确架构应该或多或少如下所示:
from pyspark.sql.types import *
StructType([
StructField("id", IntegerType(), True),
StructField("created_at", TimestampType(), True),
StructField("updated_at", StringType(), True)
])
Although using distributed data structures for task like this is a serious overkill, not to mention inefficient, you can try to adjust your first solution as follows:
尽管对这样的任务使用分布式数据结构是一种严重的矫枉过正,更不用说效率低下,您可以尝试如下调整您的第一个解决方案:
StructType([
StructField(name, eval(type), True) for (name, type) in df.rdd.collect()
])
but it is not particularly safe (eval
). It could be easier to build a schema from JSON / dictionary. Assuming you have function which maps from type description to canonical type name:
但不是特别安全(eval
)。从 JSON/字典构建模式可能更容易。假设您具有从类型描述映射到规范类型名称的函数:
def get_type_name(s: str) -> str:
"""
>>> get_type_name("int")
'integer'
"""
_map = {
'int': IntegerType().typeName(),
'timestamp': TimestampType().typeName(),
# ...
}
return _map.get(s, StringType().typeName())
You can build dictionary of following shape:
您可以构建以下形状的字典:
schema_dict = {'fields': [
{'metadata': {}, 'name': 'id', 'nullable': True, 'type': 'integer'},
{'metadata': {}, 'name': 'created_at', 'nullable': True, 'type': 'timestamp'}
], 'type': 'struct'}
and feed it to StructType.fromJson
:
并将其喂给StructType.fromJson
:
StructType.fromJson(schema_dict)
回答by Andy Quiroz
val columns: Array[String] = df1.columns
val reorderedColumnNames: Array[String] = df2.columns //or do the reordering you want
val result: DataFrame = dataFrame.select(reorderedColumnNames.head, reorderedColumnNames.tail: _*)
回答by BigData-Guru
Below steps can be followed to change the Datatype Objects
可以按照以下步骤更改数据类型对象
data_schema=[
StructField("age", IntegerType(), True),
StructField("name", StringType(), True)
]
final_struct=StructType(fields=data_schema)
df=spark.read.json('/home/abcde/Python-and-Spark-for-Big-Data-master/Spark_DataFrames/people.json', schema=final_struct)
df.printSchema()
root
|-- age: integer (nullable = true)
|-- name: string (nullable = true)