Python 如何按指定规则更改边的权重?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/3965360/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 13:36:00  来源:igfitidea点击:

How to change edges' weight by designated rule?

pythonalgorithmnetworkxedge-list

提问by Johnny

I have a weighted graph:

我有一个加权图:

F=nx.path_graph(10)
G=nx.Graph()
for (u, v) in F.edges():
    G.add_edge(u,v,weight=1)

Get the nodes list:

获取节点列表:

[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]

I want to change each edge's weight by this rule:

我想通过这个规则改变每条边的权重:

Remove one node, such as node 5, clearly, edge (4, 5), and (5, 6)will be delete, and the weight of each edge will turn to:

删除一个节点,比如节点5,显然,边(4, 5)(5, 6)将被删除,每条边的权重变为:

{# these edges are nearby the deleted edge (4, 5) and (5, 6)

(3,4):'weight'=1.1,

(6,7):'weight'=1.1,

 #these edges are nearby the edges above mentioned

(2,3):'weight'=1.2,

(7,8):'weight'=1.2,

 #these edges are nearby the edges above mentioned

(1,2):'weight'=1.3,

(8,9):'weight'=1.3,

 # this edge is nearby (1,2)

(0,1):'weight'=1.4}

How to write this algorithm?

这个算法怎么写?

path_graphis just an example. I need a program to suit any graph type. Furthermore, the program need to be iterable, it means I can remove one node from the origin graph each time.

path_graph只是一个例子。我需要一个适合任何图形类型的程序。此外,程序需要是可迭代的,这意味着我每次可以从原点图中删除一个节点。

回答by Aric

You can access the edge weight as G[u][v]['weight'] or by iterating over the edge data. So you can e.g.

您可以通过 G[u][v]['weight'] 或通过迭代边缘数据来访问边缘权重。所以你可以例如

In [1]: import networkx as nx

In [2]: G=nx.DiGraph()

In [3]: G.add_edge(1,2,weight=10)

In [4]: G.add_edge(2,3,weight=20)

In [5]: G[2][3]['weight']
Out[5]: 20

In [6]: G[2][3]['weight']=200

In [7]: G[2][3]['weight']
Out[7]: 200

In [8]: G.edges(data=True)
Out[8]: [(1, 2, {'weight': 10}), (2, 3, {'weight': 200})]

In [9]: for u,v,d in G.edges(data=True):
   ...:     d['weight']+=7
   ...:     
   ...:     

In [10]: G.edges(data=True)
Out[10]: [(1, 2, {'weight': 17}), (2, 3, {'weight': 207})]